test_beam_search_decoder.py 8.0 KB
Newer Older
Q
Qingsheng Li 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A simple machine translation demo using beam search decoder.
"""

import contextlib
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor
from paddle.fluid.contrib.decoder.beam_search_decoder import *
import unittest
import os

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim = 32
word_dim = 32
decoder_size = hidden_dim
IS_SPARSE = True
batch_size = 2
max_length = 8
topk_size = 50
trg_dic_size = 10000
beam_size = 2


def encoder():
    # encoder
    src_word = layers.data(
        name="src_word", shape=[1], dtype='int64', lod_level=1)
    src_embedding = layers.embedding(
        input=src_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE)

    fc1 = layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = layers.sequence_last_step(input=lstm_hidden0)
    return encoder_out


def decoder_state_cell(context):
    h = InitState(init=context, need_reorder=True)
    state_cell = StateCell(inputs={'x': None}, states={'h': h}, out_state='h')

    @state_cell.state_updater
    def updater(state_cell):
        current_word = state_cell.get_input('x')
        prev_h = state_cell.get_state('h')
        # make sure lod of h heritted from prev_h
        h = layers.fc(input=[prev_h, current_word],
                      size=decoder_size,
                      act='tanh')
        state_cell.set_state('h', h)

    return state_cell


def decoder_train(state_cell):
    # decoder
    trg_language_word = layers.data(
        name="target_word", shape=[1], dtype='int64', lod_level=1)
    trg_embedding = layers.embedding(
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE)

    decoder = TrainingDecoder(state_cell)

    with decoder.block():
        current_word = decoder.step_input(trg_embedding)
        decoder.state_cell.compute_state(inputs={'x': current_word})
        current_score = layers.fc(input=decoder.state_cell.get_state('h'),
                                  size=target_dict_dim,
                                  act='softmax')
        decoder.state_cell.update_states()
        decoder.output(current_score)

    return decoder()


def decoder_decode(state_cell):
    init_ids = layers.data(
        name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = layers.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    decoder = BeamSearchDecoder(
        state_cell=state_cell,
        init_ids=init_ids,
        init_scores=init_scores,
        target_dict_dim=target_dict_dim,
        word_dim=word_dim,
        input_var_dict={},
        topk_size=topk_size,
        sparse_emb=IS_SPARSE,
        max_len=max_length,
        beam_size=beam_size,
        end_id=1,
        name=None)
    decoder.decode()
    translation_ids, translation_scores = decoder()

    return translation_ids, translation_scores


def train_main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder()
    state_cell = decoder_state_cell(context)
    rnn_out = decoder_train(state_cell)
    label = layers.data(
        name="target_next_word", shape=[1], dtype='int64', lod_level=1)
    cost = layers.cross_entropy(input=rnn_out, label=label)
    avg_cost = layers.mean(x=cost)

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-3)
    optimizer.minimize(avg_cost)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)
    feed_order = ['src_word', 'target_word', 'target_next_word']

    exe = Executor(place)

    def train_loop(main_program):
        exe.run(framework.default_startup_program())

        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

158
        for pass_id in range(1):
Q
Qingsheng Li 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
            for batch_id, data in enumerate(train_reader()):
                outs = exe.run(main_program,
                               feed=feeder.feed(data),
                               fetch_list=[avg_cost])
                avg_cost_val = np.array(outs[0])
                print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                      " avg_cost=" + str(avg_cost_val))
                if batch_id > 3:
                    break

    train_loop(framework.default_main_program())


def decode_main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder()
    state_cell = decoder_state_cell(context)
    translation_ids, translation_scores = decoder_decode(state_cell)

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([0 for _ in range(batch_size)], dtype='int64')
    init_scores_data = np.array(
        [1. for _ in range(batch_size)], dtype='float32')
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
    init_lod = [1] * batch_size
    init_lod = [init_lod, init_lod]

    init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
    init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

    feed_order = ['src_word']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

207 208
    data = next(train_reader())
    feed_dict = feeder.feed([[x[0]] for x in data])
Q
Qingsheng Li 已提交
209 210 211 212 213 214 215 216
    feed_dict['init_ids'] = init_ids
    feed_dict['init_scores'] = init_scores

    result_ids, result_scores = exe.run(
        framework.default_main_program(),
        feed=feed_dict,
        fetch_list=[translation_ids, translation_scores],
        return_numpy=False)
217
    print(result_ids.lod())
Q
Qingsheng Li 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265


class TestBeamSearchDecoder(unittest.TestCase):
    pass


@contextlib.contextmanager
def scope_prog_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            yield


def inject_test_train(use_cuda):
    f_name = 'test_{0}_train'.format('cuda' if use_cuda else 'cpu')

    def f(*args):
        with scope_prog_guard():
            train_main(use_cuda)

    setattr(TestBeamSearchDecoder, f_name, f)


def inject_test_decode(use_cuda, decorator=None):
    f_name = 'test_{0}_decode'.format('cuda' if use_cuda else 'cpu', 'sparse')

    def f(*args):
        with scope_prog_guard():
            decode_main(use_cuda)

    if decorator is not None:
        f = decorator(f)

    setattr(TestBeamSearchDecoder, f_name, f)


for _use_cuda_ in (False, True):
    inject_test_train(_use_cuda_)

for _use_cuda_ in (False, True):
    _decorator_ = None
    inject_test_decode(use_cuda=_use_cuda_, decorator=_decorator_)

if __name__ == '__main__':
    unittest.main()