framework.py 68.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18
import six
19

Y
Yu Yang 已提交
20
import numpy as np
Q
qiaolongfei 已提交
21

22
from .proto import framework_pb2
23 24
try:
    from . import core
25
except ImportError as e:
26 27 28 29
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
Y
yuyang18 已提交
30
    directory. The original error is: \n""" + e.message)
31
except Exception as e:
32
    raise e
33
from . import unique_name
Y
Yu Yang 已提交
34

35
__all__ = [
36 37
    'Program',
    'Operator',
F
fengjiayi 已提交
38
    'Parameter',
39 40 41
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
42
    'get_var',
43
]
Y
Yu Yang 已提交
44

Q
qiaolongfei 已提交
45 46 47 48 49 50 51 52
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
53 54
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
55 56 57
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
58

59
def convert_np_dtype_to_dtype_(np_dtype):
60 61
    """
    Convert the data type in numpy to the data type in Paddle
62

63
    Args:
64
        np_dtype(np.dtype): the data type in numpy.
65

66 67
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
68 69

    """
70 71
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
72
        return core.VarDesc.VarType.FP32
73
    elif dtype == np.float64:
74
        return core.VarDesc.VarType.FP64
75
    elif dtype == np.float16:
76
        return core.VarDesc.VarType.FP16
77
    elif dtype == np.int32:
78
        return core.VarDesc.VarType.INT32
79
    elif dtype == np.int16:
80
        return core.VarDesc.VarType.INT16
81
    elif dtype == np.int64:
82
        return core.VarDesc.VarType.INT64
83
    elif dtype == np.bool:
84
        return core.VarDesc.VarType.BOOL
85 86
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
87 88
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
89
    else:
90
        raise ValueError("Not supported numpy dtype " + six.binary_type(dtype))
91 92 93


def dtype_is_floating(dtype):
94 95 96
    """
    Check the data type is floating or not.
    Args:
97
        dtype(np.dtype|core.VarDesc.VarType): data type.
98 99 100 101 102
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
103
    if not isinstance(dtype, core.VarDesc.VarType):
104 105
        dtype = convert_np_dtype_to_dtype_(dtype)

106 107 108 109
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
110 111


Y
Yang Yang(Tony) 已提交
112
def _debug_string_(proto, throw_on_error=True):
113 114 115 116 117 118 119 120 121 122 123
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
124
    error_fields = list()
Y
Yang Yang(Tony) 已提交
125
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
126 127
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
128 129 130
    return proto.__str__()


Y
Yu Yang 已提交
131
class Variable(object):
132
    """
133 134 135
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
136
    two variables in different blocks could have the same name.
137

138 139
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
140

141
    Most of a Variable's member variables can be setted to be None. It mean
142
    it is not available or will be specified later.
143 144

    Args:
145
        block(Block): The block that the variable belongs to.
146 147
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
148 149
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
150
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
151
            Some kinds of variable do not contain shape, just set it to None.
152 153 154
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
155
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
156
            series data.
157
            Default: None
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
180 181
    """

Y
Yu Yang 已提交
182 183
    def __init__(self,
                 block,
Y
Yu Yang 已提交
184
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
185 186 187 188
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
189
                 capacity=None,
Q
QI JUN 已提交
190
                 persistable=None,
F
fengjiayi 已提交
191
                 error_clip=None,
Y
Yu Yang 已提交
192
                 stop_gradient=False,
F
fengjiayi 已提交
193
                 is_data=False,
Y
Yu Yang 已提交
194
                 **kwargs):
Y
Yu Yang 已提交
195
        self.block = block
F
fengjiayi 已提交
196
        self.error_clip = error_clip
Y
Yu Yang 已提交
197 198

        if name is None:
Y
Yu Yang 已提交
199
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
200
        is_new_var = False
201
        name = name if isinstance(name, six.binary_type) else name.encode()
D
Dong Zhihong 已提交
202 203 204
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
205
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
206
            is_new_var = True
Y
Yu Yang 已提交
207

Y
Yu Yang 已提交
208 209 210 211 212 213 214 215
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
216
        if shape is not None:
Y
Yu Yang 已提交
217
            if is_new_var:
218
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
219 220 221 222 223 224 225 226
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
227
        if dtype is not None:
228
            if not isinstance(dtype, core.VarDesc.VarType):
229
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
230
            if is_new_var:
F
fengjiayi 已提交
231
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
232
            else:
F
fengjiayi 已提交
233
                old_dtype = self.dtype
Q
QI JUN 已提交
234
                if dtype != old_dtype:
Y
Yu Yang 已提交
235 236 237 238 239
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
240 241

        if lod_level is not None:
Y
Yu Yang 已提交
242
            if is_new_var:
243
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
244 245 246 247 248 249 250
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
251 252 253 254 255 256 257 258 259 260 261
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

262 263 264 265 266 267 268 269
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
270
        self.block.vars[name] = self
Y
Yu Yang 已提交
271
        self.op = None
Y
Yu Yang 已提交
272
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
273
        self.is_data = is_data
Y
Yu Yang 已提交
274

275
    def __str__(self):
Y
Yang Yang(Tony) 已提交
276 277
        return self.to_string(True)

F
update  
fengjiayi 已提交
278
    def to_string(self, throw_on_error, with_details=False):
279 280 281 282
        """
        Get debug string.

        Args:
283 284
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
285
            with_details(bool): more details about variables and parameters
286 287
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
288

289 290
        Returns:
            str: The debug string.
291
        """
F
update  
fengjiayi 已提交
292 293
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
294
        protostr = self.desc.serialize_to_string()
295
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
296 297 298 299
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
300 301
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
302
        return res_str
303 304 305

    __repr__ = __str__

W
Wu Yi 已提交
306
    def _set_desc(self, input):
307 308 309 310 311 312 313 314 315
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
316 317
        self.desc = input

318 319 320 321
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
322 323 324 325
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
326 327
    @property
    def name(self):
328
        return self.desc.name()
Y
Yu Yang 已提交
329

T
typhoonzero 已提交
330 331 332 333
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
334 335 336
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
337
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
338 339

    @property
F
fengjiayi 已提交
340 341
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
342 343 344

    @property
    def lod_level(self):
345
        return self.desc.lod_level()
Y
Yu Yang 已提交
346

Y
Yu Yang 已提交
347 348 349 350
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
351
    def _set_error_clip(self, error_clip):
352 353 354 355 356 357 358 359 360
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
361 362
        self.error_clip = error_clip

Y
Yu Yang 已提交
363

F
fengjiayi 已提交
364 365 366
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
367

368 369
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
370 371 372 373
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
374
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
375 376 377 378 379
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
380 381 382 383
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
384 385 386 387 388 389 390 391 392
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
393
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
394 395 396 397 398 399
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
400 401 402 403 404 405 406 407
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
408 409
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
410 411
        return self.op_proto_map[type]

412 413 414 415 416 417 418
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
419

Y
Yu Yang 已提交
420
class Operator(object):
421
    """
422 423 424 425 426 427 428
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
429
        type(str): The type of operator. Default None.
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
450
        Block.append_op or Block._prepend_op instead.
451 452 453 454 455 456 457 458 459 460

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
461
    """
462 463 464 465 466
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
467
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
468
    }
469

Y
Yu Yang 已提交
470 471
    def __init__(self,
                 block,
Y
Yu Yang 已提交
472
                 desc,
Y
Yu Yang 已提交
473 474 475 476 477
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
478
        self.desc = desc
G
gongweibao 已提交
479 480 481 482 483
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
484 485 486 487
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
488 489
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
490 491 492

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
493 494
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
495

G
gongweibao 已提交
496 497
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
498

F
fengjiayi 已提交
499 500 501 502 503
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
504
        self.desc.set_type(type)
F
fengjiayi 已提交
505
        proto = OpProtoHolder.instance().get_op_proto(type)
506

Y
Yang Yang(Tony) 已提交
507 508
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
509
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
510 511
                    return True
            return False
Q
QI JUN 已提交
512

Y
Yang Yang(Tony) 已提交
513 514 515 516 517 518 519
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
520 521 522 523
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
524 525
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
526 527 528
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
529
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
530
                            in_arg_names.append(arg)
531 532
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
533
                        else:
534
                            if isinstance(arg.name, six.string_types):
535 536 537
                                in_arg_names.append(arg.name)
                            elif isinstance(arg.name, six.binary_type):
                                in_arg_names.append(arg.name.decode())
M
minqiyang 已提交
538 539 540 541
                            else:
                                raise TypeError(
                                    "arguments require unicode, str or bytes, but get %s instead."
                                    % (type(arg.name)))
542
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
543 544
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
545

Y
Yu Yang 已提交
546
        if outputs is not None:
547 548 549 550 551 552 553
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
554 555
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
556 557 558
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
559

F
fengjiayi 已提交
560
            for out_proto in proto.outputs:
561 562 563 564
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
565 566
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
567 568 569
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
570
                    if isinstance(arg.name, six.string_types):
571 572 573 574
                        out_arg_names.append(arg.name)
                    elif isinstance(arg.name, six.binary_type):
                        out_arg_names.append(arg.name.decode())
                    else:
M
minqiyang 已提交
575 576 577
                        raise TypeError(
                            "arguments require unicode, str or bytes, but get %s instead."
                            % (type(arg.name)))
578 579
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
580

G
gongweibao 已提交
581 582
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
583
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
584
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
585
                attr_name = attr.name
G
gongweibao 已提交
586
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
587
                    continue
G
gongweibao 已提交
588
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
589 590
                self._update_desc_attr(attr_name, attr_val)

591
        self.desc.check_attrs()
592
        if self.has_kernel(type):
Q
QI JUN 已提交
593
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
594
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
595

596 597 598
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
599
    def to_string(self, throw_on_error):
600
        """
601 602
        Get debug string.

603
        Args:
604 605
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
606

607 608
        Returns:
            str: The debug string.
609 610

        """
611
        protostr = self.desc.serialize_to_string()
612
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
613 614 615 616
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
617 618 619

    __repr__ = __str__

F
fengjiayi 已提交
620 621 622 623 624
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
625
        """
626
        Get the input arguments according to the input parameter name.
627

628 629
        Args:
            name(str): The input parameter name.
630

631 632 633
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
634
        """
F
fengjiayi 已提交
635 636
        return self.desc.input(name)

T
typhoonzero 已提交
637
    def rename_input(self, old_name, new_name):
638 639 640 641 642 643 644 645 646 647
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
648 649 650
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
651 652 653 654 655 656 657 658 659 660
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
661 662
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
663 664 665 666
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
667 668 669 670 671 672 673 674
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
675
    def output(self, name):
676
        """
677
        Get output arguments by the output parameter name.
678

679 680
        Args:
            name(str): The output parameter name.
681

682 683 684
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
685
        """
F
fengjiayi 已提交
686 687 688 689 690 691
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

692 693 694 695 696 697 698 699
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
700
    def has_attr(self, name):
701
        """
702 703
        Whether this Operator has the attribute with name or not.

704
        Args:
705
            name(str): the attribute name.
706

707 708
        Returns:
            bool: True if has this attribute.
709 710

        """
F
fengjiayi 已提交
711 712 713
        return self.desc.has_attr(name)

    def attr_type(self, name):
714
        """
715
        Get the type of attribute by attribute's name.
716

717 718
        Args:
            name(str): the attribute name.
719

720 721
        Returns:
            core.AttrType: the attribute type.
722
        """
F
fengjiayi 已提交
723 724
        return self.desc.attr_type(name)

Y
yuyang18 已提交
725
    def set_attr(self, name, val):
726 727 728 729 730 731 732 733 734 735
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
749 750
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
751 752
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
753
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
754 755 756 757 758
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
759

F
fengjiayi 已提交
760 761 762 763 764
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
765
        """
766 767
        Get the attribute by name.

768
        Args:
769
            name(str): the attribute name.
770

771 772
        Returns:
            bool|int|str|float|list: The attribute value. The return value
773 774
            can be any valid attribute type.
        """
F
fengjiayi 已提交
775
        return self.desc.attr(name)
Y
Yu Yang 已提交
776

G
gongweibao 已提交
777
    def block_attr_id(self, name):
778
        """
G
gongweibao 已提交
779
        Get the block attribute's id by name.
780

781 782
        Args:
            name(str): the attribute name.
783

784 785
        Returns:
            int: the block index.
786
        """
G
gongweibao 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
833

J
JiayiFeng 已提交
834
    def all_attrs(self):
F
fengjiayi 已提交
835
        """
836 837 838
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
839
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
840 841 842 843
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
844 845
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
846
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
847 848 849 850 851 852 853 854
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
855 856
        return attr_map

Y
Yu Yang 已提交
857

Y
Yu Yang 已提交
858
class Block(object):
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
888
    def __init__(self, program, idx):
Y
Yu Yang 已提交
889
        self.desc = program.desc.block(idx)
890
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
891
        self.ops = list()  # operator list
Y
Yu Yang 已提交
892
        self.program = program
893
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
894

895
    def __str__(self):
Y
Yang Yang(Tony) 已提交
896 897
        return self.to_string(True)

F
fengjiayi 已提交
898 899
    def to_string(self, throw_on_error, with_details=False):
        """
900 901
        Get debug string.

F
fengjiayi 已提交
902 903
        Args:
            throw_on_error(bool): raise exception when self is not initialized
904
                when throw_on_error is True.
F
update  
fengjiayi 已提交
905
            with_details(bool): more details about variables and parameters
906 907
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
908

909 910
        Returns:
            str: The debug string.
F
fengjiayi 已提交
911 912 913 914
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
915
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
916 917
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
918
            for var in list(self.vars.values()):
F
fengjiayi 已提交
919
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
920
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
921
            for op in self.ops:
F
fengjiayi 已提交
922 923
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
924 925 926
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
927 928
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
929 930
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
931 932 933

    __repr__ = __str__

Y
Yu Yang 已提交
934 935
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
936
        return self.desc.parent
Y
Yu Yang 已提交
937

Y
Yu Yang 已提交
938 939 940 941
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
942
    def _set_forward_block_idx(self, idx):
943 944 945 946 947 948 949 950 951
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
952
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
953

Y
Yu Yang 已提交
954 955
    @property
    def idx(self):
Y
Yu Yang 已提交
956
        return self.desc.id
Y
Yu Yang 已提交
957

Q
Qiao Longfei 已提交
958
    def var(self, name):
959 960 961 962 963 964 965 966 967 968 969 970 971
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
972
        if not isinstance(name, six.string_types):
973 974 975 976
            if not isinstance(name, six.binary_type):
                raise TypeError(
                    "var require string as parameter, but get %s instead." %
                    (type(name)))
Y
Yu Yang 已提交
977 978
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
979
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
980
        return v
Q
Qiao Longfei 已提交
981

W
Wu Yi 已提交
982
    def _var_recursive(self, name):
983 984 985 986 987 988 989 990 991 992 993 994 995
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1022

Q
Qiao Longfei 已提交
1023
    def all_parameters(self):
1024
        return list(self.iter_parameters())
1025

1026
    def iter_parameters(self):
1027
        return (item[1] for item in list(self.vars.items())
1028
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1029

Y
Yu Yang 已提交
1030
    def create_var(self, *args, **kwargs):
1031
        var = Variable(block=self, *args, **kwargs)
1032 1033
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1034
        return var
Y
Yu Yang 已提交
1035

Q
Qiao Longfei 已提交
1036 1037 1038
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1039
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1040 1041
        """
        Rename variable in vars and ops' inputs and outputs
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1054 1055
        """
        if not self.has_var(name):
1056
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1057 1058
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1059
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1060 1061 1062 1063 1064 1065 1066
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1067
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1068 1069 1070 1071
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1072
        orig_var_type = v.type
W
Wu Yi 已提交
1073 1074
        self.desc._rename_var(name, new_name)
        # NOTE: v is destroyed by C++ after calling _rename_var.
T
wip  
typhoonzero 已提交
1075
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
1076
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1077 1078 1079 1080
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1081
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1082 1083 1084 1085 1086 1087 1088
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1089
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1090 1091
            var = Variable(
                self,
T
typhoonzero 已提交
1092
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1093 1094 1095 1096
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1097
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1098 1099 1100
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1101
        self._sync_with_cpp()
1102
        return var
T
typhoonzero 已提交
1103

W
Wu Yi 已提交
1104 1105 1106
    def _remove_var(self, name):
        self._sync_with_cpp()
        self.desc._remove_var(name)
1107 1108
        del self.vars[name]

Y
Yu Yang 已提交
1109 1110
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1111
        param = Parameter(global_block, *args, **kwargs)
1112
        if 'initializer' in kwargs:
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1133
        return param
Y
Yu Yang 已提交
1134

Y
Yu Yang 已提交
1135
    def append_op(self, *args, **kwargs):
1136 1137 1138 1139 1140 1141
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1142
        op_desc = self.desc.append_op()
1143
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1144 1145 1146
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1147
    def _insert_op(self, index, *args, **kwargs):
1148 1149 1150 1151 1152 1153 1154 1155 1156
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1157 1158
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1159 1160 1161 1162
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1163
    def _remove_op(self, index):
1164 1165 1166 1167 1168 1169 1170 1171 1172
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1173 1174
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1175 1176
        del self.ops[index]

W
Wu Yi 已提交
1177
    def _slice_ops(self, start, end):
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1188
        return self.ops[start:end]
Y
Yancey1989 已提交
1189

W
Wu Yi 已提交
1190 1191
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1192
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1193
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1194 1195
        return op

W
Wu Yi 已提交
1196
    def _sync_with_cpp(self):
1197
        """
1198 1199
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1200
        """
Q
Qiao Longfei 已提交
1201 1202 1203 1204 1205
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1206
        # sync variables removed from c++ end
1207
        for var in list(self.vars.keys()):
1208 1209 1210
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1211
        # sync operators from cpp
1212 1213 1214 1215
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1232 1233 1234 1235 1236

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1237
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1238 1239 1240 1241 1242 1243 1244

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1258 1259 1260 1261
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1262
    def _copy_param_info_from(self, other):
1263
        """
1264 1265
        Copy the information of parameters from the other block.

1266
        Args:
1267 1268 1269 1270 1271
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1272 1273 1274 1275 1276

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1277 1278
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1279
        for p in other.iter_parameters():
1280 1281 1282
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1283
                raise ValueError("_copy_param_info_from should be invoked with "
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1296
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1297
                error_clip=p.error_clip,
1298 1299 1300
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1301
    def _clone_variable(self, var):
1302 1303
        """
        Clone a variable into current block.
1304

1305 1306 1307 1308
        Args:
            var: the variable to be cloned.

        Returns:
1309
            Variable: the new  variable cloned from 'var' in current block.
1310 1311
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1312 1313 1314 1315 1316
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1317 1318
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1319
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1320 1321 1322 1323 1324 1325
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1326 1327
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1328 1329 1330 1331 1332 1333 1334
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1335 1336
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1337
        return ret_var
1338

Y
Yu Yang 已提交
1339 1340

class Program(object):
D
dzhwinter 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1352
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1353 1354

    Returns:
Y
yuyang18 已提交
1355
        A empty program.
D
dzhwinter 已提交
1356 1357

    Examples:
Y
yuyang18 已提交
1358 1359 1360 1361 1362 1363
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1364 1365 1366

    """

1367 1368
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1369 1370
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1371
        self._seed = 0
Y
yuyang18 已提交
1372
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1373
        self._op_role_var = []
Y
yuyang18 已提交
1374 1375 1376

    @property
    def op_role(self):
Y
yuyang18 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1390 1391 1392 1393 1394 1395 1396 1397
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1398 1399 1400 1401 1402 1403 1404
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1405 1406 1407 1408
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1409
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1410 1411

    @contextlib.contextmanager
1412
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1413 1414 1415 1416 1417 1418 1419
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1420
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1421 1422 1423 1424

        Examples:

            >>> p, g = backward(...)
1425
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1426 1427
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1428 1429
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1430 1431 1432 1433
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1434
        yield
Y
yuyang18 已提交
1435
        self._op_role_var = []
Y
yuyang18 已提交
1436
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1437

1438
    def __str__(self):
Y
yuyang18 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1448 1449
        return self.to_string(True)

F
fengjiayi 已提交
1450 1451 1452
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1453

F
fengjiayi 已提交
1454
        Args:
Y
yuyang18 已提交
1455 1456
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1457

Y
yuyang18 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1478 1479
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1480 1481
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1482

1483
    def get_desc(self):
Y
yuyang18 已提交
1484 1485 1486 1487 1488 1489 1490
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1491 1492
        return self.desc

1493
    def clone(self, for_test=False):
Y
yuyang18 已提交
1494 1495 1496
        """
        Create a new, duplicated program.

1497

Y
yuyang18 已提交
1498 1499 1500 1501
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1502

Y
yuyang18 已提交
1503 1504 1505 1506
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1507 1508 1509 1510 1511
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1512 1513

        Args:
Y
yuyang18 已提交
1514 1515
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1516

D
dzhwinter 已提交
1517
        Returns:
Y
yuyang18 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1571 1572
        """
        if for_test:
1573
            p = self.inference_optimize(export_for_deployment=False)
1574
        else:
1575
            p = Program()
G
gongweibao 已提交
1576 1577
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1578
            p.desc = core.ProgramDesc(self.desc)
G
gongweibao 已提交
1579 1580 1581 1582 1583
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1584
            p._sync_with_cpp()
1585

W
Wu Yi 已提交
1586
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1587
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1588
        return p
1589

1590
    def prune(self, targets):
Y
yuyang18 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1606 1607 1608 1609 1610 1611
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1612 1613
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1614
                    # and we need to find the current op that generate this
1615 1616 1617 1618 1619 1620 1621 1622
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1623
                    t = t.op
1624 1625 1626 1627
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1628
                else:
1629 1630
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1631 1632 1633 1634

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
1635
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
1636
        res._sync_with_cpp()
1637 1638
        return res

1639
    def inference_optimize(self, export_for_deployment=True):
Y
yuyang18 已提交
1640
        """
F
fengjiayi 已提交
1641 1642 1643 1644 1645
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1646
        3. change the :code:`is_test`
Y
yuyang18 已提交
1647 1648 1649
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1650 1651 1652 1653
        Args:
            export_for_deployment(bool): remove the read ops that are added by py_reader
                                        for cpp inference library

Y
yuyang18 已提交
1654 1655 1656 1657 1658 1659
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1660 1661
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1662
        res = Program()
1663
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1664 1665 1666 1667

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        if export_for_deployment:
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
                    root_block._remove_var(var.name())
F
fengjiayi 已提交
1679 1680

        # change all `is_test` attributes to True
1681
        for i in range(res.desc.num_blocks()):
1682
            block = res.desc.block(i)
1683
            for j in range(block.op_size()):
1684 1685 1686
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1687
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
1688
        res._sync_with_cpp()
1689 1690
        return res

1691 1692
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1693 1694 1695 1696 1697 1698 1699
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1700
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1701 1702 1703 1704

        Returns:
            Program: A deserialized program desc.
        """
1705 1706
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1707
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
1708
        p._sync_with_cpp()
1709
        return p
Y
Yu Yang 已提交
1710

D
dzhwinter 已提交
1711 1712
    @property
    def random_seed(self):
Y
yuyang18 已提交
1713 1714 1715 1716 1717 1718
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1719 1720
        return self._seed

Q
qiaolongfei 已提交
1721 1722
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1723 1724 1725
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1726 1727
        return self.desc.num_blocks()

D
dzhwinter 已提交
1728 1729 1730 1731 1732 1733
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1734
    def __repr__(self):
1735
        return self.__str__()
1736

Y
Yu Yang 已提交
1737
    def global_block(self):
Y
yuyang18 已提交
1738 1739 1740
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1741 1742
        return self.blocks[0]

Q
Qiao Longfei 已提交
1743
    def block(self, index):
Y
yuyang18 已提交
1744 1745 1746 1747 1748 1749 1750 1751
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1752 1753
        return self.blocks[index]

Y
Yu Yang 已提交
1754
    def current_block(self):
Y
yuyang18 已提交
1755 1756 1757 1758
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1759 1760
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1761
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1772
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1773 1774 1775
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1776 1777 1778 1779 1780
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1781 1782 1783 1784 1785
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1786 1787
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1788
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1799 1800 1801
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1802
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1803

W
Wu Yi 已提交
1804
    def _copy_param_info_from(self, other):
1805
        """
1806
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1807

Y
yuyang18 已提交
1808 1809 1810
        Notes: This is a very low level API. Users should not invoke it
        directly.

1811 1812 1813 1814 1815 1816 1817
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1818
            raise TypeError("_copy_param_info_from should be invoked with "
1819 1820 1821
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1822
            raise ValueError("_copy_param_info_from should be invoked with two "
1823
                             "program, with represent the same topology")
W
Wu Yi 已提交
1824
        self.global_block()._copy_param_info_from(other.global_block())
1825

F
fengjiayi 已提交
1826 1827 1828
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1829

Y
yuyang18 已提交
1830 1831 1832
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1833 1834 1835 1836 1837 1838 1839
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1840
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1841 1842 1843
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1844
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1845
                             "program, with represent the same topology")
1846
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1847 1848 1849
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1850
    def list_vars(self):
Y
yuyang18 已提交
1851 1852 1853 1854 1855 1856
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1857
        for each_block in self.blocks:
1858
            for each_var in list(each_block.vars.values()):
1859 1860
                yield each_var

Y
Yu Yang 已提交
1861

Y
Yu Yang 已提交
1862
class Parameter(Variable):
1863
    """
1864
    Parameter is derived from Variable. A parameter is a persistable
1865
    Variable, and will be updated by optimizers after each iteration.
1866
    The training of a neural network is essentially the updating of
1867 1868
    its parameters.

1869
    Relative to a general Variable, a Parameter has several its own
1870 1871
    member variables:

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1884 1885
    """

Y
Yu Yang 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1896 1897 1898

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1899 1900 1901 1902
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1903 1904
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1905
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1906

W
wanghaoshuang 已提交
1907
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1908

F
fengjiayi 已提交
1909 1910 1911
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1912 1913 1914
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1915

F
update  
fengjiayi 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1930
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1931
            for attr_name in additional_attr:
1932 1933
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
1934 1935
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1936 1937 1938 1939
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1940

Y
Yu Yang 已提交
1941
# program is a global instance.
Y
Yu Yang 已提交
1942 1943
_main_program_ = Program()
_startup_program_ = Program()
1944

1945

1946
def default_startup_program():
Y
Yu Yang 已提交
1947
    """
Y
yuyang18 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1957

Y
Yu Yang 已提交
1958 1959 1960
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1961
    return _startup_program_
1962

1963

1964
def default_main_program():
Y
Yu Yang 已提交
1965
    """
Y
yuyang18 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1975

Y
Yu Yang 已提交
1976 1977 1978
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1979
    return _main_program_
Y
Yu Yang 已提交
1980 1981 1982 1983 1984


def switch_main_program(program):
    """
    Switch the main program to a new program.
1985

Y
Yu Yang 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2000
    Switch the startup program to a new program
Y
Yu Yang 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2016 2017 2018
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2019

Y
Yu Yang 已提交
2020
    Examples:
Y
yuyang18 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2031

Y
Yu Yang 已提交
2032
    Examples:
Y
yuyang18 已提交
2033 2034 2035 2036 2037 2038

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2039

Y
Yu Yang 已提交
2040
    Args:
Y
yuyang18 已提交
2041
        main_program(Program): New main program inside `with` statement.
2042
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2056 2057 2058 2059


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2060
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2061

X
xuwei06 已提交
2062 2063 2064
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2065
        If None, default_global_program() will be used.
X
xuwei06 已提交
2066 2067 2068 2069 2070 2071 2072

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2073
    assert isinstance(program, Program)
X
xuwei06 已提交
2074 2075

    return program.global_block().var(name)