crop_op.h 6.0 KB
Newer Older
W
whs 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#pragma once
S
Siddharth Goyal 已提交
16 17
#include <utility>
#include <vector>
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/strided_memcpy.h"
W
wanghaoshuang 已提交
21 22

namespace paddle {
23
namespace operators {  // Internal
W
wanghaoshuang 已提交
24 25 26 27

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
28 29
using framework::Tensor;

F
stash  
fengjiayi 已提交
30 31 32 33 34 35 36 37 38 39 40 41
static std::vector<int> GetOffsets(const framework::ExecutionContext& ctx) {
  std::vector<int> res;
  int rank = ctx.Input<Tensor>("X")->dims().size();
  if (ctx.HasInput("Offsets")) {
    PADDLE_ENFORCE(ctx.Attr<std::vector<int>>("offsets").empty(),
                   "Input 'Offsets' and attribute 'offsets' should not be used "
                   "at the same time.");
    const auto* offsets_tensor = ctx.Input<Tensor>("Offsets");
    PADDLE_ENFORCE_EQ(offsets_tensor->dims().size(), 1);
    PADDLE_ENFORCE_EQ(
        rank, offsets_tensor->dims()[0],
        "Offsets size should be equal to dimension size of input tensor.");
F
fengjiayi 已提交
42 43 44 45 46 47 48 49
    const int* offsets_data;
    framework::Tensor cpu_tmp_tensor;
    if (platform::is_cpu_place(offsets_tensor->place())) {
      offsets_data = offsets_tensor->data<int>();
    } else {
      framework::TensorCopySync(*offsets_tensor, platform::CPUPlace(),
                                &cpu_tmp_tensor);
      offsets_data = cpu_tmp_tensor.data<int>();
F
stash  
fengjiayi 已提交
50
    }
F
fengjiayi 已提交
51
    res = std::vector<int>(offsets_data, offsets_data + rank);
F
stash  
fengjiayi 已提交
52 53 54
  } else {
    res = ctx.Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
G
gongweibao 已提交
55
        rank, static_cast<int>(res.size()),
F
stash  
fengjiayi 已提交
56 57 58 59 60
        "Offsets size should be equal to dimension size of input tensor.");
  }
  return res;
}

W
whs 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
template <typename DeviceContext, typename T, size_t D>
void CropFunction(const framework::ExecutionContext& context) {
  auto* x = context.Input<Tensor>("X");
  auto* out = context.Output<Tensor>("Out");
  auto out_dims = out->dims();
  if (out_dims[0] == -1) {
    out_dims[0] = x->dims()[0];
  }
  out->mutable_data<T>(out_dims, context.GetPlace());
  auto x_stride = framework::stride(x->dims());
  auto out_stride = framework::stride(out->dims());
  auto offsets = GetOffsets(context);
  int64_t offset = 0;
  for (size_t i = 0; i < offsets.size(); ++i) {
    offset += (x_stride[i] * offsets[i]);
  }

  auto x_tensor = EigenTensor<T, D>::From(*x);
  auto out_tensor = EigenTensor<T, D>::From(*out);
  Eigen::array<int, D> e_offsets;
  Eigen::array<int, D> e_shape;
  for (size_t i = 0; i < D; ++i) {
    e_offsets[i] = offsets[i];
    e_shape[i] = out->dims()[i];
  }
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  out_tensor.device(place) = x_tensor.slice(e_offsets, e_shape);
}

template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
92
class CropKernel : public framework::OpKernel<T> {
93 94
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
whs 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    int rank = context.Input<Tensor>("X")->dims().size();
    switch (rank) {
      case 1:
        CropFunction<DeviceContext, T, 1>(context);
        break;
      case 2:
        CropFunction<DeviceContext, T, 2>(context);
        break;
      case 3:
        CropFunction<DeviceContext, T, 3>(context);
        break;
      case 4:
        CropFunction<DeviceContext, T, 4>(context);
        break;
      case 5:
        CropFunction<DeviceContext, T, 5>(context);
        break;
      case 6:
        CropFunction<DeviceContext, T, 6>(context);
        break;
      default:
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
118 119 120
    }
  }
};
W
wanghaoshuang 已提交
121

Q
QI JUN 已提交
122
template <typename DeviceContext, typename T, size_t D>
W
wanghaoshuang 已提交
123
void CropGradFunction(const framework::ExecutionContext& context) {
124
  auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
W
whs 已提交
125
  auto* x = context.Input<Tensor>("X");
126
  if (d_x != nullptr) {
127
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
W
whs 已提交
128
    d_x->mutable_data<T>(x->dims(), context.GetPlace());
F
stash  
fengjiayi 已提交
129
    auto offsets = GetOffsets(context);
130
    Eigen::array<std::pair<int, int>, D> paddings;
Q
qiaolongfei 已提交
131
    for (size_t i = 0; i < D; ++i) {
132
      paddings[i].first = offsets[i];
W
wanghaoshuang 已提交
133
      paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
134 135 136
    }
    auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
    auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
Q
QI JUN 已提交
137 138
    d_x_tensor.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
139
        d_out_tensor.pad(paddings, 0);
W
wanghaoshuang 已提交
140 141 142
  }
}

Q
QI JUN 已提交
143
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
144
class CropGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
145 146
 public:
  void Compute(const framework::ExecutionContext& context) const override {
147
    size_t rank =
148
        context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
149
    switch (rank) {
W
wanghaoshuang 已提交
150
      case 1:
Q
QI JUN 已提交
151
        CropGradFunction<DeviceContext, T, 1>(context);
W
wanghaoshuang 已提交
152 153
        break;
      case 2:
Q
QI JUN 已提交
154
        CropGradFunction<DeviceContext, T, 2>(context);
W
wanghaoshuang 已提交
155 156
        break;
      case 3:
Q
QI JUN 已提交
157
        CropGradFunction<DeviceContext, T, 3>(context);
W
wanghaoshuang 已提交
158 159
        break;
      case 4:
Q
QI JUN 已提交
160
        CropGradFunction<DeviceContext, T, 4>(context);
W
wanghaoshuang 已提交
161 162
        break;
      case 5:
Q
QI JUN 已提交
163
        CropGradFunction<DeviceContext, T, 5>(context);
W
wanghaoshuang 已提交
164 165
        break;
      case 6:
Q
QI JUN 已提交
166
        CropGradFunction<DeviceContext, T, 6>(context);
W
wanghaoshuang 已提交
167 168
        break;
      default:
169 170
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
W
wanghaoshuang 已提交
171 172 173 174 175 176
    }
  }
};

}  // namespace operators
}  // namespace paddle