unary.cc 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
Chen Weihang 已提交
15
#include "paddle/pten/infermeta/unary.h"
16

17
#include <set>
18

19
#include "paddle/pten/common/data_type.h"
20 21
#include "paddle/pten/core/infermeta_utils.h"

22 23
namespace pten {

24 25
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out) {
  out->share_meta(x);
26 27
}

28 29 30 31 32
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out) {
  auto x_dims = x.dims();
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
  int in_dims_size = x_dims.size();
  if (start_axis < 0) {
    start_axis = start_axis + in_dims_size;
  }
  if (stop_axis < 0) {
    stop_axis = stop_axis + in_dims_size;
  }
  PADDLE_ENFORCE_GE(stop_axis,
                    start_axis,
                    paddle::platform::errors::InvalidArgument(
                        "The stop_axis should be greater"
                        "than or equal to start_axis."));

  int64_t outer = 1;
  std::vector<int32_t> out_shape;
  out_shape.reserve(in_dims_size - stop_axis + start_axis);

  for (int i = 0; i < start_axis; ++i) {
    out_shape.push_back(x_dims[i]);
  }
  for (int i = start_axis; i <= stop_axis; i++) {
    if (x_dims[i] == -1 || outer == -1) {
      outer = -1;
    } else {
      outer *= x_dims[i];
    }
  }
  out_shape.push_back(outer);
  for (int i = stop_axis + 1; i < in_dims_size; i++) {
    out_shape.push_back(x_dims[i]);
  }
64
  const auto& out_dims = pten::framework::make_ddim(out_shape);
65 66 67
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
68

69
  if (x_dims[0] == out_dims[0]) {
70 71
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
72
    out->share_lod(x);
73 74 75
  }
}

76 77 78 79
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(out_dtype);
  out->set_layout(x.layout());
80 81
}

82 83 84 85 86 87 88
void CreateLikeInferMeta(const MetaTensor& x,
                         DataType dtype,
                         DataLayout layout,
                         MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(dtype == DataType::UNDEFINED ? x.dtype() : dtype);
  out->set_layout(layout == DataLayout::UNDEFINED ? x.layout() : layout);
89 90
}

91 92 93 94
static pten::framework::DDim ValidateShape(
    const std::vector<int64_t> shape, const pten::framework::DDim& in_dims) {
  const int64_t in_size = pten::framework::product(in_dims);
  auto in_dims_vec = pten::framework::vectorize(in_dims);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                  in_dims_vec.cend(),
                                  [](int64_t i) { return i > 0; });
  // only one dimension can be set to -1, whose size will be automatically
  // infered.
  const int64_t unk_dim_val = -1;
  const int64_t copy_dim_val = 0;

  std::vector<int64_t> output_shape(shape.size(), 0);
  int64_t capacity = 1;
  int unk_dim_idx = -1;
  for (size_t i = 0; i < shape.size(); ++i) {
    if (shape[i] == unk_dim_val) {
      PADDLE_ENFORCE_EQ(
          unk_dim_idx,
          -1,
          paddle::platform::errors::InvalidArgument(
              "Only one dimension value of 'shape' in ReshapeOp can "
              "be -1. But received shape = [%s], shape[%d] is also -1.",
114
              pten::framework::make_ddim(shape),
115 116 117 118 119 120 121 122 123 124 125
              i));
      unk_dim_idx = i;
    } else if (shape[i] == copy_dim_val) {
      PADDLE_ENFORCE_LT(
          static_cast<int>(i),
          in_dims.size(),
          paddle::platform::errors::InvalidArgument(
              "The index of 0 in `shape` must be less than "
              "the input tensor X's dimensions. "
              "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
              "X's dimensions = %d.",
126
              pten::framework::make_ddim(shape),
127 128 129 130 131 132 133 134 135 136 137
              i,
              in_dims,
              in_dims.size()));
    } else {
      PADDLE_ENFORCE_GT(
          shape[i],
          0,
          paddle::platform::errors::InvalidArgument(
              "Each dimension value of 'shape' in ReshapeOp must not "
              "be negative except one unknown dimension. "
              "But received  shape = [%s], shape[%d] = %d.",
138
              pten::framework::make_ddim(shape),
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
              i,
              shape[i]));
    }

    // NOTE all non-zero values will be converted to True (include negative
    // value)
    capacity *= (shape[i] ? shape[i] : in_dims[i]);
    output_shape[i] = (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
  }

  if (unk_dim_idx != -1) {
    if (all_positive) {
      // in_size < 0 and is un-determinate in compile time, skip the check,
      // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
      // capacity = -24, in_size = -8, output_shape[0] = 0
      // the following check will fail.
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(
          output_shape[unk_dim_idx] * capacity,
          -in_size,
          paddle::platform::errors::InvalidArgument(
              "The 'shape' attribute in ReshapeOp is invalid. "
              "The input tensor X'size must be divisible by known "
              "capacity of 'shape'. "
              "But received X's shape = [%s], X's size = %d, "
              "'shape' is [%s], known capacity of 'shape' is %d.",
              in_dims,
              in_size,
167
              pten::framework::make_ddim(shape),
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
              capacity));
    } else {
      output_shape[unk_dim_idx] = -1;
    }
  } else {
    if (all_positive) {
      PADDLE_ENFORCE_EQ(
          capacity,
          in_size,
          paddle::platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X'size must be equal to the capacity of "
              "'shape'. "
              "But received X's shape = [%s], X's size = %d, 'shape' is "
              "[%s], the capacity of 'shape' is %d.",
              in_dims,
              in_size,
185
              pten::framework::make_ddim(shape),
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
              capacity));
    }
  }

  // support reshape with zero-input(input tensor with product(shape) == 0)
  // by now we require that if the input tensor is zero shape, the target
  // shape of output must be zero
  if (in_size == 0) {
    PADDLE_ENFORCE_LE(
        capacity,
        in_size,
        paddle::platform::errors::InvalidArgument(
            "The 'shape' in ReshapeOp is invalid. "
            "The input tensor X's shape = [%s], X's capacity = %d."
            "But the target shape of Out is [%s],  the "
            "capacity of 'Out' is %d.",
            in_dims,
            in_size,
204
            pten::framework::make_ddim(shape),
205 206 207
            capacity));
  }

208
  return pten::framework::make_ddim(output_shape);
209 210
}

211 212 213
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out) {
214 215 216 217 218
  PADDLE_ENFORCE_EQ(!shape.empty(),
                    true,
                    paddle::platform::errors::InvalidArgument(
                        "The parameter 'shape' in ReshapeOp must be set. "
                        "But received 'shape' is empty."));
219
  auto x_dims = x.dims();
220
  auto out_dims = ValidateShape(shape, x_dims);
221 222 223 224
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  if (x_dims[0] == out_dims[0]) {
225 226
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
227
    out->share_lod(x);
228 229 230
  }
}

231 232 233 234
void ReshapeInferMeta(const MetaTensor& x,
                      const ScalarArray& shape,
                      MetaTensor* out) {
  InferMetaFromVecValue(x, shape.GetData(), out);
235 236
}

237 238 239
/*  Why not use ReduceInferMeta directly?
    Because we need make InferMetaFunction's args follow the design of api.yaml
*/
240 241 242 243 244 245
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out) {
  ReduceInferMeta(x, axis, keep_dim, dtype, std::move(out));
246 247
}

248 249 250 251 252
void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     DataType dtype,
                     MetaTensor* out) {
253 254
  bool reduce_all = true;
  std::set<int64_t> dims_set(axis.begin(), axis.end());
255
  for (int64_t i = 0; i < x.dims().size(); ++i) {
256 257 258 259 260 261 262 263
    if (dims_set.find(i) == dims_set.end()) {
      reduce_all = false;
      break;
    }
  }

  std::vector<int64_t> out_dim_vector;
  if (keep_dim) {
264
    for (int64_t i = 0; i < x.dims().size(); ++i) {
265 266 267
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        out_dim_vector.push_back(1);
      } else {
268
        out_dim_vector.push_back(x.dims().at(i));
269 270 271
      }
    }
  } else {
272
    for (int64_t i = 0; i < x.dims().size(); ++i) {
273 274 275
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        continue;
      } else {
276
        out_dim_vector.push_back(x.dims().at(i));
277 278 279 280 281 282 283
      }
    }

    if (out_dim_vector.size() == 0) {
      out_dim_vector.push_back(1);
    }
  }
284
  DDim out_dim = pten::framework::make_ddim(out_dim_vector);
285

286 287 288 289
  DataType out_dtype;
  if (dtype != DataType::UNDEFINED) {
    out_dtype = dtype;
  } else {
290 291
    if (x.dtype() == DataType::BOOL || x.dtype() == DataType::INT32 ||
        x.dtype() == DataType::INT64) {
292 293
      out_dtype = DataType::INT64;
    } else {
294
      out_dtype = x.dtype();
295
    }
296 297
  }

298 299 300 301 302 303 304 305 306 307
  out->set_dims(out_dim);
  out->set_dtype(out_dtype);
  out->set_layout(x.layout());
}

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out) {
  ReduceInferMeta(x, axis, keep_dim, DataType::UNDEFINED, out);
308 309
}

310 311 312 313 314 315 316 317
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
  out->set_layout(layout);
}

318
}  // namespace pten
319

320
PT_REGISTER_INFER_META_FN(sign, pten::UnchangedInferMeta);