test_to_tensor.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest

17
import numpy
18

19 20
import paddle
from paddle.fluid import core
21
from paddle.fluid.framework import Program, program_guard
22 23 24 25 26 27 28 29 30 31


def case0(x):
    a = paddle.to_tensor([1.0, 2.0, 3.0], dtype="int64")

    return a


def case1(x):
    paddle.set_default_dtype("float64")
32
    a = paddle.to_tensor([1, 2, 3], stop_gradient=False, dtype='float32')
33 34 35 36 37 38 39 40 41

    return a


def case2(x):
    if core.is_compiled_with_cuda():
        place = paddle.CUDAPlace(0)
    else:
        place = paddle.CPUPlace()
42 43 44
    a = paddle.to_tensor(
        [1.0, 2.0, 3.0], place=place, dtype="int64", stop_gradient=False
    )
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

    return a


def case3(x):
    paddle.set_default_dtype("float64")
    if core.is_compiled_with_cuda():
        place = paddle.CUDAPlace(0)
    else:
        place = paddle.CPUPlace()
    a = paddle.to_tensor([1.0, 2.0, 3.0], place=place)

    return a


60 61 62 63 64 65
def case4(x):
    paddle.set_default_dtype("float64")
    if core.is_compiled_with_cuda():
        place = paddle.CUDAPlace(0)
    else:
        place = paddle.CPUPlace()
66 67
    a = paddle.to_tensor([1], place=place)
    b = paddle.to_tensor([2.1], place=place, stop_gradient=False, dtype="int64")
68 69 70 71 72
    c = paddle.to_tensor([a, b, [1]], dtype="float32")

    return c


73 74 75 76 77 78 79 80 81 82 83 84 85 86
def case5(x):
    paddle.set_default_dtype("float64")
    a = paddle.to_tensor([1, 2])

    return a


def case6(x):
    na = numpy.array([1, 2], dtype='int32')
    a = paddle.to_tensor(na)

    return a


87 88 89 90 91 92
def case7(x):
    a = paddle.to_tensor(10.0)

    return a


93 94 95 96 97
def case8(x):
    a = paddle.to_tensor({1: 1})
    return a


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
class TestToTensorReturnVal(unittest.TestCase):
    def test_to_tensor_badreturn(self):
        paddle.disable_static()
        x = paddle.to_tensor([3])

        a = paddle.jit.to_static(case0)(x)
        b = case0(x)
        self.assertTrue(a.dtype == b.dtype)
        self.assertTrue(a.stop_gradient == b.stop_gradient)
        self.assertTrue(a.place._equals(b.place))

        a = paddle.jit.to_static(case1)(x)
        b = case1(x)
        self.assertTrue(a.dtype == b.dtype)
        self.assertTrue(a.stop_gradient == b.stop_gradient)
        self.assertTrue(a.place._equals(b.place))

        a = paddle.jit.to_static(case2)(x)
        b = case2(x)
        self.assertTrue(a.dtype == b.dtype)
        self.assertTrue(a.stop_gradient == b.stop_gradient)
        self.assertTrue(a.place._equals(b.place))

        a = paddle.jit.to_static(case3)(x)
        b = case3(x)
        self.assertTrue(a.dtype == b.dtype)
124 125 126 127 128 129
        self.assertTrue(a.stop_gradient == b.stop_gradient)
        self.assertTrue(a.place._equals(b.place))

        a = paddle.jit.to_static(case4)(x)
        b = case4(x)
        self.assertTrue(a.dtype == b.dtype)
130 131 132 133 134 135 136 137 138 139 140 141
        self.assertTrue(a.stop_gradient == b.stop_gradient)
        self.assertTrue(a.place._equals(b.place))

        a = paddle.jit.to_static(case5)(x)
        b = case5(x)
        self.assertTrue(a.dtype == b.dtype)
        self.assertTrue(a.stop_gradient == b.stop_gradient)
        self.assertTrue(a.place._equals(b.place))

        a = paddle.jit.to_static(case6)(x)
        b = case6(x)
        self.assertTrue(a.dtype == b.dtype)
142 143 144
        self.assertTrue(a.stop_gradient == b.stop_gradient)
        self.assertTrue(a.place._equals(b.place))

145 146 147 148 149 150
        a = paddle.jit.to_static(case7)(x)
        b = case7(x)
        self.assertTrue(a.dtype == b.dtype)
        self.assertTrue(a.stop_gradient == b.stop_gradient)
        self.assertTrue(a.place._equals(b.place))

151 152 153 154 155 156 157 158 159 160 161
    def test_to_tensor_err_log(self):
        paddle.disable_static()
        x = paddle.to_tensor([3])
        try:
            a = paddle.jit.to_static(case8)(x)
        except Exception as e:
            self.assertTrue(
                "Do not support transform type `<class 'dict'>` to tensor"
                in str(e)
            )

162 163 164 165 166 167 168 169 170 171 172 173

class TestStatic(unittest.TestCase):
    def test_static(self):
        paddle.enable_static()
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            if core.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
            else:
                place = paddle.CPUPlace()

174 175 176 177 178 179
            x = paddle.to_tensor(
                paddle.randn([5, 2]),
                dtype='float64',
                stop_gradient=False,
                place=place,
            )
180 181 182 183 184 185 186 187 188 189 190 191 192

            out = paddle.static.nn.fc(x, 1)

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[x, out])


if __name__ == '__main__':
    unittest.main()