test_frame_op.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from numpy.lib.stride_tricks import as_strided
import paddle
import unittest

from op_test import OpTest


def frame_from_librosa(x, frame_length, hop_length, axis=-1):
    if axis == -1 and not x.flags["C_CONTIGUOUS"]:
        x = np.ascontiguousarray(x)
    elif axis == 0 and not x.flags["F_CONTIGUOUS"]:
        x = np.asfortranarray(x)

    n_frames = 1 + (x.shape[axis] - frame_length) // hop_length
    strides = np.asarray(x.strides)

    if axis == -1:
        shape = list(x.shape)[:-1] + [frame_length, n_frames]
        strides = list(strides) + [hop_length * x.itemsize]

    elif axis == 0:
        shape = [n_frames, frame_length] + list(x.shape)[1:]
        strides = [hop_length * x.itemsize] + list(strides)

    else:
        raise ValueError("Frame axis={} must be either 0 or -1".format(axis))

    return as_strided(x, shape=shape, strides=strides)


class TestFrameOp(OpTest):
    def setUp(self):
        self.op_type = "frame"
        self.shape, self.type, self.attrs = self.initTestCase()
        self.inputs = {
            'X': np.random.random(size=self.shape).astype(self.type),
        }
        self.outputs = {
            'Out': frame_from_librosa(
                x=self.inputs['X'], **self.attrs)
        }

    def initTestCase(self):
        input_shape = (150, )
        input_type = 'float64'
        attrs = {
            'frame_length': 50,
            'hop_length': 15,
            'axis': -1,
        }
        return input_shape, input_type, attrs

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()
        paddle.disable_static()

    def test_check_grad_normal(self):
        paddle.enable_static()
        self.check_grad(['X'], 'Out')
        paddle.disable_static()


class TestCase1(TestFrameOp):
    def initTestCase(self):
        input_shape = (150, )
        input_type = 'float64'
        attrs = {
            'frame_length': 50,
            'hop_length': 15,
            'axis': 0,
        }
        return input_shape, input_type, attrs


class TestCase2(TestFrameOp):
    def initTestCase(self):
        input_shape = (8, 150)
        input_type = 'float64'
        attrs = {
            'frame_length': 50,
            'hop_length': 15,
            'axis': -1,
        }
        return input_shape, input_type, attrs


class TestCase3(TestFrameOp):
    def initTestCase(self):
        input_shape = (150, 8)
        input_type = 'float64'
        attrs = {
            'frame_length': 50,
            'hop_length': 15,
            'axis': 0,
        }
        return input_shape, input_type, attrs


class TestCase4(TestFrameOp):
    def initTestCase(self):
        input_shape = (4, 2, 150)
        input_type = 'float64'
        attrs = {
            'frame_length': 50,
            'hop_length': 15,
            'axis': -1,
        }
        return input_shape, input_type, attrs


class TestCase5(TestFrameOp):
    def initTestCase(self):
        input_shape = (150, 4, 2)
        input_type = 'float64'
        attrs = {
            'frame_length': 50,
            'hop_length': 15,
            'axis': 0,
        }
        return input_shape, input_type, attrs


if __name__ == '__main__':
    unittest.main()