basic_engine.cc 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/basic_engine.h"

#include <algorithm>
#include <memory>
#include <queue>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
26

27 28 29 30 31 32 33
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/profiler.h"

34 35
DECLARE_bool(sort_sum_gradient);

36 37 38
namespace paddle {
namespace imperative {

39 40 41 42
void BasicEngine::Init(
    const std::vector<std::shared_ptr<VarBase>>& tensors,
    const std::vector<std::shared_ptr<VarBase>>& grad_tensors,
    bool retain_graph) {
43
  retain_graph_ = retain_graph;
44

45 46 47 48 49 50 51
  PADDLE_ENFORCE_EQ(
      tensors.size(), grad_tensors.size(),
      platform::errors::Unavailable(
          "The size of tensors do not equal the size of grad_tensors,"
          "the size of tensors is %s, but the size of grad_tensors is %s.",
          tensors.size(), grad_tensors.size()));

C
chentianyu03 已提交
52 53 54 55
  PADDLE_ENFORCE_EQ(accumulators_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators are not empty before preparing it for "
                        "backward network execution."));
56 57 58 59
  PADDLE_ENFORCE_EQ(accumulators_with_grad_node_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators with grad_node as the key are not empty "
                        "before preparing it for backward network execution."));
C
chentianyu03 已提交
60

61 62 63 64 65
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto var = tensors[i];
    auto grad_tensor = grad_tensors[i];

    auto init_node = var->GradVarBase()->GradNode();
C
chentianyu03 已提交
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80
    PADDLE_ENFORCE_EQ(
        var->GradVarBase()->GraphIsFreed(), false,
        platform::errors::Unavailable(
            "%s trying to backward through the same graph a second "
            "time, but this graph have already been freed. Please "
            "specify Tensor.backward(retain_graph=True) when "
            "calling backward at the first time.",
            var->Name()));

    if (!retain_graph) {
      VLOG(5) << "Clear the auto-grad graph from grad var " << var->Name()
              << " because of retain_graph=False when calling backward";
      var->GradVarBase()->SetGraphIsFreed(true);
    }
81

82 83 84 85 86 87
    if (init_node == nullptr || var->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op for var or loss is "
                 "stop_gradient=True: "
              << var->Name();
      continue;
    }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    VLOG(3) << "Init node of backward";

    PADDLE_ENFORCE_EQ(
        var->HasGradVar(), true,
        platform::errors::NotFound("Tensor %s has no gradient", var->Name()));

    auto& fwd_var = var->Var().Get<framework::LoDTensor>();
    auto* grad_var =
        var->GradVarBase()->MutableVar()->GetMutable<framework::LoDTensor>();
    VLOG(6) << "init loss grad:" << var->GradVarBase()->Name()
            << " as stop_gradient false";
    var->GradVarBase()->InnerSetOverridedStopGradient(false);
    auto* dev_ctx =
        platform::DeviceContextPool::Instance().Get(fwd_var.place());
    if (grad_tensor == nullptr) {
      grad_var->Resize(fwd_var.dims());
      grad_var->mutable_data(fwd_var.place(), fwd_var.type());
      operators::math::set_constant(*dev_ctx, grad_var, 1.0);
    } else {
      paddle::framework::TensorCopy(
          grad_tensor->Var().Get<framework::LoDTensor>(), fwd_var.place(),
          *dev_ctx, grad_var);
    }

C
chentianyu03 已提交
113
    VariableWrapper* init_grad_var = var->GradVarBase()->SharedVar().get();
114 115 116
    auto& accumulator =
        accumulators_with_grad_node_[init_grad_var->GetGradNode()]
                                    [init_grad_var];
C
chentianyu03 已提交
117 118 119 120 121 122 123
    if (!accumulator) {
      if (FLAGS_sort_sum_gradient) {
        accumulator.reset(new SortedGradientAccumulator(init_grad_var));
      } else {
        accumulator.reset(new EagerGradientAccumulator(init_grad_var));
      }
    }
124 125
    accumulator->IncreaseRefCnt();
    accumulator->IncreaseCurCnt();
C
chentianyu03 已提交
126

127 128
    init_nodes_.push_back(init_node);
  }
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}

void BasicEngine::CheckBackwardInputs(const OpBase& op) {
  for (auto& pair : op.GetInsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (auto& var : pair.second) {
      if (!var) {
        continue;
      }

      auto* inner_var = var->MutableVar();
      framework::Tensor* tensor = nullptr;
      if (!inner_var->IsInitialized() ||
          inner_var->IsType<framework::LoDTensor>()) {
        tensor = inner_var->GetMutable<framework::LoDTensor>();
      }

      if (tensor && !tensor->IsInitialized()) {
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(op.place());
151 152 153 154 155 156 157 158
        // NOTE(zhiqiu): since grad variable is ungenerated, so the dtype is not
        // correct. var->DataType() returns the default dtype, which is float32.
        // Here, we use the type of the corresponding forward datatype.

        tensor->mutable_data(op.place(), var->ForwardDataType());
        VLOG(6) << "Set ungenerated Grad: " << var->Name()
                << " as zero with dtype "
                << framework::DataTypeToString(var->ForwardDataType());
159 160 161 162 163 164
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
    }
  }
}

165 166 167
void BasicEngine::PrepareGradAccumulators(
    const OpBase& op,
    const std::vector<std::shared_ptr<GradOpNode>>& grad_pending_nodes) {
168 169 170 171 172 173 174 175
  for (const auto& pair : op.GetOutsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (const auto& var : pair.second) {
      if (!var) continue;

176
      bool find_grad_node_of_var = false;
177
      if (grad_pending_nodes.size()) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        // Because Inplace op overwrites the grad_node of the input grad_var. So
        // only the information of grad_pending_node can be used to find the
        // grad_node of grad_var.
        for (auto& grad_pending_node : grad_pending_nodes) {
          PADDLE_ENFORCE_NOT_NULL(
              grad_pending_node,
              platform::errors::NotFound("Grad pending node is nullptr."));
          for (auto& grad_pending_op : *grad_pending_node) {
            VLOG(6) << "Determine whether var (" << var->Name()
                    << ") is the input var of grad_pending_op ("
                    << grad_pending_op.Type() << ").";
            grad_pending_op.EnforceHasInOut();
            for (const auto& grad_pending_op_ins_pair :
                 grad_pending_op.GetInsMap()) {
              if (!grad_pending_op_ins_pair.second.IsGrad()) {
                continue;
              }
              for (const auto& pending_in_var :
                   grad_pending_op_ins_pair.second) {
                if (var == pending_in_var) {
                  VLOG(6) << "Var (" << var->Name()
                          << ") is the input var of grad_pending_op ("
                          << grad_pending_op.Type() << ").";
                  find_grad_node_of_var = true;
                  break;
                }
              }
              if (find_grad_node_of_var) {
                break;
              }
            }
          }
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
          if (find_grad_node_of_var) {
            auto& accumulator =
                accumulators_with_grad_node_[grad_pending_node][var.get()];

            if (!accumulator) {
              if (FLAGS_sort_sum_gradient) {
                accumulator.reset(new SortedGradientAccumulator(var.get()));
              } else {
                accumulator.reset(new EagerGradientAccumulator(var.get()));
              }
            }

            accumulator->IncreaseRefCnt();

            VLOG(3) << "Prepare to acccumulate variable grad " << var->Name()
                    << "(" << var.get()
                    << ") that has grad node with reference count "
                    << accumulator->RefCnt();
            break;
          }
        }
232 233 234 235 236 237 238 239 240 241 242
        if (!find_grad_node_of_var) {
          // Special case: `set_value` is inplace op, and it can change
          // the var with `stop_gradient=True` to the var with
          // `stop_gradient=False `.
          // This inplace var has grad_node (the inplace op), but it
          // isn't the input of grad_pending_op.
          VLOG(6) << "No grad node corresponding to grad Tensor ("
                  << var->Name() << ") was found.";
        }
      }

243
      if (!grad_pending_nodes.size() || !find_grad_node_of_var) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        auto& accumulator = accumulators_[var.get()];
        if (!accumulator) {
          if (FLAGS_sort_sum_gradient) {
            accumulator.reset(new SortedGradientAccumulator(var.get()));
          } else {
            accumulator.reset(new EagerGradientAccumulator(var.get()));
          }
        }

        accumulator->IncreaseRefCnt();

        VLOG(3) << "Prepare to acccumulate variable grad " << var->Name() << "("
                << var.get()
                << ") that don't have grad node  with reference count "
                << accumulator->RefCnt();
259
      }
260 261 262 263 264 265 266
    }
  }
}

void BasicEngine::PrepareDeps() {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
267 268
      platform::errors::AlreadyExists("Op deps are not empty before preparing "
                                      "it for backward network execution."));
269 270 271 272

  std::queue<GradOpNode*> q;
  std::unordered_set<GradOpNode*> visited;

273 274 275 276
  for (size_t i = 0; i < init_nodes_.size(); ++i) {
    q.push(init_nodes_[i].get());
    visited.insert(init_nodes_[i].get());
  }
277 278 279 280 281

  while (!q.empty()) {
    auto* cur_node = q.front();
    q.pop();

282 283
    const auto& grad_pending_nodes = cur_node->GradPendingNodes();

284
    for (auto& cur_op : *cur_node) {
Z
Zeng Jinle 已提交
285
      cur_op.EnforceHasInOut();
286
      PrepareGradAccumulators(cur_op, grad_pending_nodes);
287 288 289 290 291
    }

    for (auto& grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
292
          platform::errors::NotFound("Grad pending node is nullptr."));
293 294 295 296 297 298 299 300 301
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

302 303 304 305 306 307
static std::shared_ptr<NameVarMap<VariableWrapper>> CallGradientHooks(
    const NameVarMap<VariableWrapper>& bwd_ins, const std::string& op_type) {
  std::shared_ptr<NameVarMap<VariableWrapper>> tmp_ins_ptr = nullptr;
  for (const auto& pair : bwd_ins) {
    for (size_t i = 0; i < pair.second.size(); ++i) {
      auto& var = pair.second[i];
308
      if (var->HasVariableWrapperHook()) {
309 310 311
        if (tmp_ins_ptr == nullptr) {
          tmp_ins_ptr = std::make_shared<NameVarMap<VariableWrapper>>(bwd_ins);
        }
312 313 314
        VLOG(3) << "Call " << var->GetVariableWrapperHooks().size()
                << " hooks of " << op_type << "'s input `" << pair.first
                << "`'s var `" << var->Name() << "`.";
315
        auto tmp_var = var;
316
        for (const auto& hook_pair : var->GetVariableWrapperHooks()) {
317 318 319 320 321 322 323 324 325
          tmp_var = (*hook_pair.second)(tmp_var);
        }
        (*tmp_ins_ptr)[pair.first][i] = tmp_var;
      }
    }
  }
  return tmp_ins_ptr;
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
static bool IsInputCanInplace(const std::shared_ptr<VariableWrapper>& var) {
  auto* inner_var = var->MutableVar();
  if (inner_var->IsInitialized() && inner_var->IsType<framework::LoDTensor>()) {
    auto tensor = inner_var->GetMutable<framework::LoDTensor>();
    if (tensor->IsInitialized()) {
      return true;
    }
  }
  return false;
}

static void PerformBackwardInplace(const std::string& op_type,
                                   const NameVarMap<VariableWrapper>& ins,
                                   NameVarMap<VariableWrapper>* outs) {
  auto& infer_inplace =
      paddle::framework::OpInfoMap::Instance().Get(op_type).infer_inplace_;

  if (infer_inplace) {
    auto in_to_outs = infer_inplace(true);
    for (auto& pair : in_to_outs) {
      framework::LoDTensor *in_tensor = nullptr, *out_tensor = nullptr;
      for (auto& p : ins) {
        if (p.first == pair.first) {
          // has at least one var
          if (p.second.size() > 0 && p.second[0]) {
            auto& in_var = p.second[0];
            VLOG(10) << p.first << " use_count: " << in_var.use_count();
            // the refcount of var to be inplaced should be 1
            if (in_var.use_count() == 1) {
              if (IsInputCanInplace(in_var)) {
                in_tensor =
                    in_var->MutableVar()->GetMutable<framework::LoDTensor>();
              }
            }
          }
        }
      }
      if (!in_tensor) {
        continue;
      }
      for (auto& p : *outs) {
        if (p.first == pair.second) {
          if (p.second.size() > 0 && p.second[0]) {
            auto& out_var = p.second[0];
            if (out_var->Type() == framework::proto::VarType::LOD_TENSOR) {
              out_tensor =
                  out_var->MutableVar()->GetMutable<framework::LoDTensor>();
            }
          }
        }
      }
      if (!out_tensor) {
        continue;
      }
      out_tensor->ShareBufferWith(*in_tensor);
      out_tensor->Resize(in_tensor->dims());
      VLOG(4) << "Inplace performed in op " << op_type << ": " << pair.second
              << " -> " << pair.first;
    }
  }
}

388
void BasicEngine::Execute() {
389
  if (init_nodes_.empty()) {
390 391 392 393 394 395
    return;
  }

  PrepareDeps();
  // Start execute Computation graph
  std::queue<std::shared_ptr<GradOpNode>> q;
396
  for (size_t i = 0; i < init_nodes_.size(); ++i) {
C
chentianyu03 已提交
397 398 399
    if (node_deps_[init_nodes_[i].get()] == 0) {
      q.push(std::move(init_nodes_[i]));
    }
400
  }
401 402 403 404 405 406 407

  size_t op_num = 0;

  while (!q.empty()) {
    auto shared_cur_node = std::move(q.front());
    q.pop();

408 409
    auto& inplace_grad_name_map = shared_cur_node->InplaceGradNameMap();

410
    for (auto& cur_op : *shared_cur_node) {
411 412
      platform::RecordEvent op_type_record_event(cur_op.Type());

413 414 415 416 417
      ++op_num;

      // CheckBackWardInput
      CheckBackwardInputs(cur_op);

418
      // Step 1: Run Backward OP
419 420 421
      auto& bwd_ins = cur_op.GetInsMap();
      auto& bwd_outs = cur_op.GetOutsMap();

422 423 424 425 426 427 428
      /**
       * [ Why need temporary outputs here? ]
       *
       * - construct the temp output map, avoid to disrupt graph
       * - replace the element in the map by temp var, because a
       *   var may be coresponding to several grad var in one op
       */
429
      NameVarMap<VariableWrapper> tmp_outs(bwd_outs);
430

431 432 433 434 435 436 437 438 439 440
      for (auto& pair : tmp_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }

        for (auto& var : pair.second) {
          if (!var) {
            continue;
          }

441
          const auto& grad_pending_nodes = shared_cur_node->GradPendingNodes();
442 443 444
          std::unordered_map<VariableWrapper*,
                             std::unique_ptr<GradientAccumulator>>::iterator
              iter;
445
          bool flag_find_grad = false;
446
          if (grad_pending_nodes.size()) {
447 448
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with grad_node.";
449
            for (auto& grad_pending_node : grad_pending_nodes) {
450 451 452 453 454 455 456 457 458 459
              const auto& iter_grad_node =
                  accumulators_with_grad_node_.find(grad_pending_node);
              if (iter_grad_node != accumulators_with_grad_node_.end()) {
                iter = iter_grad_node->second.find(var.get());
                if (iter != iter_grad_node->second.end()) {
                  flag_find_grad = true;
                  break;
                }
              }
            }
460
            if (!flag_find_grad) {
461 462
              VLOG(6) << "Cannot find gradient of variable " << var->Name()
                      << " in accumulators_with_grad_node_";
463 464
            }
          }
465
          if (!grad_pending_nodes.size() || !flag_find_grad) {
466 467 468
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with no grad_node.";
            iter = accumulators_.find(var.get());
469
            PADDLE_ENFORCE_EQ(
470
                iter != accumulators_.end(), true,
471 472 473
                platform::errors::NotFound(
                    "Cannot find gradient of variable %s", var->Name()));
          }
474

475 476
          // leaf_accumulators_ : hooks and accumulate-grad for leaf tensor,
          // it should be orderly and not reapeated.
477
          if (var->IsLeafGrad()) {
478 479 480 481
            if (std::find(leaf_accumulators_.begin(), leaf_accumulators_.end(),
                          iter->second.get()) == leaf_accumulators_.end()) {
              leaf_accumulators_.push_back(iter->second.get());
            }
482 483 484 485

            if (iter->second->HasInnerVar()) {
              var = iter->second->InnerVar();
            }
486 487
          }

488 489 490
          if (var->OverridedStopGradient() || iter->second->RefCnt() > 1) {
            auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
            tmp_var->SetType(var->Type());
491
            tmp_var->SetForwardDataType(var->ForwardDataType());
492 493 494 495
            var = tmp_var;
            need_accu_var_list_.emplace_back(iter->second.get(), var);
            VLOG(10) << "create temporary var of " << var->Name()
                     << " for sum gradient within this graph!";
496
          } else if (!inplace_grad_name_map.empty() &&
497 498
                     inplace_grad_name_map.count(pair.first) &&
                     bwd_ins.count(inplace_grad_name_map.at(pair.first))) {
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
            // When calculate Inplace grad op, create a new output var.
            // If a tmp var has been created, there is no need to create it
            // again.
            for (auto& in_var :
                 bwd_ins.at(inplace_grad_name_map.at(pair.first))) {
              if (in_var == var) {
                auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
                tmp_var->SetType(var->Type());
                tmp_var->SetForwardDataType(var->ForwardDataType());
                inplace_output_grad_var_list_.emplace_back(var, tmp_var);
                var = tmp_var;
                VLOG(10) << "Inplace grad op does not use the Inplace "
                            "strategy, a temporary output var ("
                         << var->Name() << ") will be created.";
                break;
              }
            }
516
          }
517 518 519
        }
      }

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
      VLOG(4) << "Check whether there is any inplace operation affecting "
                 "gradient calculation.";
      for (auto& pair : bwd_ins) {
        for (auto& var_wrapper : pair.second) {
          auto wrapper_version_snapshot = var_wrapper->InplaceVersionSnapshot();
          auto tensor_version =
              var_wrapper->MutableVar()->CurrentInplaceVersion();
          PADDLE_ENFORCE_EQ(
              tensor_version, wrapper_version_snapshot,
              platform::errors::PermissionDenied(
                  "Tensor '%s' used in gradient computation in grad op '%s' "
                  "has been "
                  "modified by an inplace operation. "
                  "Its version is %s but the expected version is %s. "
                  "Please fix your code to void calling an inplace operator "
                  "after using the Tensor which will used in gradient "
                  "computation.",
                  var_wrapper->Name(), cur_op.Type(), tensor_version,
                  wrapper_version_snapshot));

          VLOG(6) << " The version of Tensor '" << var_wrapper->Name()
                  << "' is [ " << wrapper_version_snapshot << " ]";
        }
      }

545 546 547 548 549 550 551 552 553 554 555 556 557
      /**
       * [ Why need temporary inputs here? ]
       *
       * - Hook execution should not change original input tensor.
       *   User can register hook for Tensor's gradient, It is expected
       *   that the hook only affects the gradient of the backward
       *   propagation, and does not affect the gradient value input
       *   as the hook.
       * - use `tmp_ins_ptr`, only copy bwd_ins when the var in bwd_ins
       *   hold hooks
       */
      auto tmp_ins_ptr = CallGradientHooks(bwd_ins, cur_op.Type());

558 559 560 561
      if (!tmp_ins_ptr) {
        PerformBackwardInplace(cur_op.Type(), bwd_ins, &tmp_outs);
      }

562 563
      {
        VLOG(3) << "Start to execute grad op " << cur_op.Type();
564 565 566
        try {
          if (tmp_ins_ptr == nullptr) {
            OpBase::Run(cur_op.InnerOp(), bwd_ins, tmp_outs, cur_op.Attrs(),
567
                        cur_op.DefaultAttrsMap(), cur_op.place());
568 569
          } else {
            OpBase::Run(cur_op.InnerOp(), *tmp_ins_ptr, tmp_outs,
570 571
                        cur_op.Attrs(), cur_op.DefaultAttrsMap(),
                        cur_op.place());
572 573 574 575 576 577 578
          }
        } catch (platform::EnforceNotMet& exception) {
          Clear();
          throw std::move(exception);
        } catch (std::exception& ex) {
          Clear();
          PADDLE_THROW(platform::errors::External("%s", ex.what()));
579
        }
580 581
      }

582 583 584 585 586 587 588
      // Function Post Hook
      if (cur_op.HasVoidFunctionPostHook()) {
        for (const auto& hook : cur_op.GetVoidFunctionPostHooks()) {
          (*hook)();
        }
      }

589 590 591 592
      for (auto& pair : inplace_output_grad_var_list_) {
        *pair.first = std::move(*pair.second);
      }

593 594 595 596 597 598 599 600 601 602
      // Step 2: Sum Gradient of This graph
      for (auto& pair : need_accu_var_list_) {
        pair.first->SumGrad(std::move(pair.second), cur_op.id());
      }

      // Step 3: Call Hooks && Sum Gradient with Pre-Graph && Call BackwardHooks
      for (auto* accumulator : leaf_accumulators_) {
        if (!accumulator->SumGradCompleted()) {
          continue;
        }
603 604
        // 1. Call Hooks for `inner_var_`
        accumulator->CallGradientHooks();
605

606
        // 2. Sum Gradient `inner_var_` to `var_` of Current or Previous Graph
607 608
        accumulator->AccumulateGrad();

609 610
        // 3. Call backward Hooks for `var_`
        accumulator->CallReduceHooks();
611 612
      }

613
      need_accu_var_list_.clear();
614
      inplace_output_grad_var_list_.clear();
615
      leaf_accumulators_.clear();
616

617
      if (!retain_graph_) {
618
        VLOG(3) << "Remove op after op " << cur_op.Type() << " runs";
619 620
        cur_op.ClearBackwardTrace();
      }
621 622 623 624
    }

    // Step 3: Collect ready ops
    for (auto& grad_pending_node : shared_cur_node->GradPendingNodes()) {
625 626 627
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node is nullptr."));
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }

      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }
  Clear();

  VLOG(1) << "Backward op number: " << op_num;
}

void BasicEngine::Clear() {
644
  init_nodes_.clear();
645 646
  node_deps_.clear();
  accumulators_.clear();
647
  accumulators_with_grad_node_.clear();
648
  need_accu_var_list_.clear();
649
  leaf_accumulators_.clear();
650 651 652 653
}

}  // namespace imperative
}  // namespace paddle