executor_thread_worker.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/executor_thread_worker.h"
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fstream>
#include <iostream>
#include <map>
#include <algorithm>
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {

void CreateTensor(Variable* var, proto::VarType::Type var_type) {
  if (var_type == proto::VarType::LOD_TENSOR) {
    var->GetMutable<LoDTensor>();
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
    var->GetMutable<SelectedRows>();
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
    var->GetMutable<FeedFetchList>();
  } else if (var_type == proto::VarType::FETCH_LIST) {
    var->GetMutable<FeedFetchList>();
  } else if (var_type == proto::VarType::STEP_SCOPES) {
    var->GetMutable<std::vector<Scope>>();
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
    var->GetMutable<LoDRankTable>();
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
    var->GetMutable<LoDTensorArray>();
  } else if (var_type == proto::VarType::PLACE_LIST) {
    var->GetMutable<platform::PlaceList>();
  } else if (var_type == proto::VarType::READER) {
    var->GetMutable<ReaderHolder>();
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
  } else {
    PADDLE_THROW(
        "Variable type %d is not in "
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
        "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]",
        var_type);
  }
}

void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void ExecutorThreadWorker::CreateThreadResource(
    const framework::ProgramDesc& program,
    const paddle::platform::Place& place) {
  CreateThreadScope(program);
  CreateThreadOperators(program);
  SetMainProgram(program);
  SetPlace(place);
}

void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);
W
wangguibao 已提交
96 97 98 99 100

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_,
      "root_scope should be set before creating thread scope");

101 102 103 104 105 106 107 108 109 110 111 112 113 114
  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      CreateTensor(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      CreateTensor(ptr, var->GetType());
    }
  }
}

void ExecutorThreadWorker::SetDataFeed(
    const std::shared_ptr<DataFeed>& datafeed) {
W
wangguibao 已提交
115
  thread_reader_ = datafeed;
116 117 118 119 120 121
}

void ExecutorThreadWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
      thread_reader_->GetUseSlotAlias();
  for (auto name : input_feed) {
W
wangguibao 已提交
122
    thread_reader_->AddFeedVar(thread_scope_->Var(name), name);
123 124 125
  }
}

W
wangguibao 已提交
126 127 128 129 130 131 132
void ExecutorThreadWorker::SetFetchVarNames(
    const std::vector<std::string>& fetch_var_names) {
  fetch_var_names_.clear();
  fetch_var_names_.insert(fetch_var_names_.end(),
                          fetch_var_names.begin(), fetch_var_names.end());
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
void ExecutorThreadWorker::SetDevice() {
  // at most 48 threads binding currently
  static unsigned priority[] = {
    0, 1, 2, 3, 4, 5,
    6, 7, 8, 9, 10, 11,
    12, 13, 14, 15, 16, 17,
    18, 19, 20, 21, 22, 23,
    24, 25, 26, 27, 28, 29,
    30, 31, 32, 33, 34, 35,
    36, 37, 38, 39, 40, 41,
    42, 43, 44, 45, 46, 47
  };

  unsigned int i = this->thread_id_;

  if (i < sizeof(priority) / sizeof(unsigned)) {
    unsigned proc = priority[i];

    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(proc, &mask);

    if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
      LOG(ERROR) << "WARNING: Failed to set thread affinity for thread " << i;
    } else {
      CPU_ZERO(&mask);
      if ((0 == sched_getaffinity(0, sizeof(mask), &mask))
          && CPU_ISSET(proc, &mask)) {
        LOG(ERROR) << "TRACE: Thread " << i <<
            " is running on processor " << proc << "...";
      }
    }
  }
}

void ExecutorThreadWorker::TrainFiles() {
  // todo: configurable
  SetDevice();
W
wangguibao 已提交
171 172 173 174 175

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num, 0);

176
  thread_reader_->Start();
W
wangguibao 已提交
177 178 179

  int cur_batch;
  while ((cur_batch = thread_reader_->Next()) > 0) {
180 181 182 183
    // executor run here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }
W
wangguibao 已提交
184 185 186 187 188 189 190 191 192

    float avg_inspect = 0.0;
    for (int i = 0; i < fetch_var_num; ++i) {
      avg_inspect = thread_scope_->FindVar(fetch_var_names_[i])
                                 ->GetMutable<LoDTensor>()
                                 ->data<float>()[0];
      fetch_values_[i] += avg_inspect;
    }

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    thread_scope_->DropKids();
  }
}

void ExecutorThreadWorker::SetThreadId(int tid) {
  thread_id_ = tid;
}

void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
  place_ = place;
}

void ExecutorThreadWorker::SetMainProgram(
    const ProgramDesc& main_program_desc) {
  main_program_.reset(new ProgramDesc(main_program_desc));
}

void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
  root_scope_ = g_scope;
}

}   // einit_modelnd namespace framework
}   // end namespace paddle

/* vim: set expandtab ts=2 sw=2 sts=2 tw=100: */