activation_mkldnn_op.cc 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
16
#include "paddle/fluid/operators/mkldnn/softplus_mkldnn_op.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

28 29 30
namespace paddle {
namespace operators {

31 32 33 34 35 36 37 38
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
39

40 41 42 43 44 45
template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
46 47 48 49 50 51
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor"));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor"));
52 53 54 55 56

    Functor functor;
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
57

58 59 60 61 62 63
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
64
    PADDLE_ENFORCE_EQ(diff_y->layout(), DataLayout::kMKLDNN,
65 66
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input OutGrad tensor"));
A
Adam 已提交
67
    PADDLE_ENFORCE_NE(diff_y->format(), MKLDNNMemoryFormat::undef,
68 69
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input OutGrad tensor"));
70 71 72 73 74 75 76 77

    Functor functor;
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
A
Adam 已提交
78
                     mkldnn::algorithm algorithm) {
79 80 81
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Operator DNNL eletwise_forward must use CPUPlace"));
82
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
83
  const auto &mkldnn_engine = dev_ctx.GetEngine();
84

85 86
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
87

88
  bool is_inplaced = x->IsSharedBufferWith(*y);
89

90 91
  platform::ActivationMKLDNNHandler<T> handler(algorithm, ctx, mkldnn_engine,
                                               ctx.GetPlace(), x);
92

93
  auto src_memory_p = handler.AcquireSrcMemory(x);
94 95 96 97 98 99 100
  std::shared_ptr<dnnl::memory> dst_memory_p = nullptr;
  if (is_inplaced) {
    dst_memory_p = src_memory_p;
    y->mutable_data<T>(ctx.GetPlace());
  } else {
    dst_memory_p = handler.AcquireDstMemory(y);
  }
A
Adam 已提交
101
  auto activation_p = handler.AcquireForwardPrimitive();
102

103
  auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
104 105 106
  activation_p->execute(astream, {{MKLDNN_ARG_FROM, *src_memory_p},
                                  {MKLDNN_ARG_TO, *dst_memory_p}});
  astream.wait();
107

108
  y->set_layout(DataLayout::kMKLDNN);
109
  y->set_format(GetMKLDNNFormat(*dst_memory_p));
110 111
}

112 113
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
A
Adam 已提交
114
                  mkldnn::algorithm algorithm) {
115
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
116
  const auto &mkldnn_engine = dev_ctx.GetEngine();
117

118
  const auto *x = ctx.Input<Tensor>("X");
119 120
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
121

122 123
  platform::ActivationMKLDNNHandler<T> handler(algorithm, ctx, mkldnn_engine,
                                               ctx.GetPlace(), x, diff_y);
124

125 126 127
  auto src_memory_p = handler.AcquireBackwardSrcMemory(x);
  auto diff_dst_memory_p = handler.AcquireDiffDstMemory(diff_y);
  auto diff_src_memory_p = handler.AcquireDiffSrcMemory(diff_x);
A
Adam 已提交
128 129
  auto activation_backward_p = handler.AcquireBackwardPrimitive();

130
  auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
131 132 133 134 135
  activation_backward_p->execute(astream,
                                 {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                                  {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
  astream.wait();
136

137
  diff_x->set_layout(DataLayout::kMKLDNN);
138
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory_p));
139 140 141 142
}

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
143
  void operator()(const framework::ExecutionContext &ctx) const {
144 145 146 147 148 149
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
150
  void operator()(const framework::ExecutionContext &ctx) const {
151 152 153 154
    eltwise_grad<T>(ctx, algorithm);
  }
};

A
Adam 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
template <typename T>
struct GeluMKLDNNFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
      eltwise_forward<T>(ctx, mkldnn::algorithm::eltwise_gelu_tanh);
    } else {
      eltwise_forward<T>(ctx, mkldnn::algorithm::eltwise_gelu_erf);
    }
  }
};

template <typename T>
struct GeluMKLDNNGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
      eltwise_grad<T>(ctx, mkldnn::algorithm::eltwise_gelu_tanh);
    } else {
      eltwise_grad<T>(ctx, mkldnn::algorithm::eltwise_gelu_erf);
    }
  }
};

179 180 181 182 183 184 185
template <typename T>
struct SoftplusMKLDNNFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    custom_softplus_eltwise_forward<T>(ctx);
  }
};

186
template <typename T>
T
tensor-tang 已提交
187
using ReluMKLDNNFunctor =
188 189
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

A
Adam 已提交
190 191 192 193
template <typename T>
using Relu6MKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_bounded_relu>;

194 195 196 197
template <typename T>
using SwishMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_swish>;

J
jakpiase 已提交
198 199 200 201
template <typename T>
using HardSwishMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_hardswish>;

202 203 204 205
template <typename T>
using SigmoidMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_logistic>;

206
template <typename T>
T
tensor-tang 已提交
207
using TanhMKLDNNFunctor =
208 209 210
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
211
using SqrtMKLDNNFunctor =
212 213 214
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
215
using AbsMKLDNNFunctor =
216 217
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

J
jakpiase 已提交
218 219 220 221
template <typename T>
using EluMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_elu>;

222
template <typename T>
T
tensor-tang 已提交
223
using ReluMKLDNNGradFunctor =
224 225
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

A
Adam 已提交
226 227 228 229
template <typename T>
using Relu6MKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_bounded_relu>;

230 231 232 233
template <typename T>
using SwishMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_swish>;

J
jakpiase 已提交
234 235 236 237
template <typename T>
using HardSwishMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_hardswish>;

238 239 240 241
template <typename T>
using SigmoidMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_logistic>;

242
template <typename T>
T
tensor-tang 已提交
243
using TanhMKLDNNGradFunctor =
244 245 246
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
247
using SqrtMKLDNNGradFunctor =
248 249 250
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
251
using AbsMKLDNNGradFunctor =
252
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
J
jakpiase 已提交
253 254 255 256

template <typename T>
using EluMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_elu>;
257 258 259 260 261 262 263 264 265 266 267 268
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

269 270 271 272 273 274 275 276
#define REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(act_type, functor,             \
                                               grad_functor)                  \
  REGISTER_OP_KERNEL(                                                         \
      act_type, MKLDNN, ::paddle::platform::CPUPlace,                         \
      ops::MKLDNNActivationKernel<ops::functor<float>>,                       \
      ops::MKLDNNActivationKernel<ops::functor<paddle::platform::bfloat16>>); \
  REGISTER_OP_KERNEL(                                                         \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,                  \
277 278 279
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>,              \
      ops::MKLDNNActivationGradKernel<                                        \
          ops::grad_functor<paddle::platform::bfloat16>>);
280

J
jakpiase 已提交
281 282 283 284 285 286 287 288 289
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)                            \
  __macro(relu6, Relu6MKLDNNFunctor, Relu6MKLDNNGradFunctor);              \
  __macro(leaky_relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor);           \
  __macro(swish, SwishMKLDNNFunctor, SwishMKLDNNGradFunctor);              \
  __macro(hard_swish, HardSwishMKLDNNFunctor, HardSwishMKLDNNGradFunctor); \
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor);                 \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor);                 \
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);                    \
  __macro(elu, EluMKLDNNFunctor, EluMKLDNNGradFunctor);
290 291

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);
A
arlesniak 已提交
292 293
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(relu, ReluMKLDNNFunctor,
                                       ReluMKLDNNGradFunctor);
294 295
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(gelu, GeluMKLDNNFunctor,
                                       GeluMKLDNNGradFunctor);
296 297
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(sigmoid, SigmoidMKLDNNFunctor,
                                       SigmoidMKLDNNGradFunctor);
298 299 300 301 302

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(
    softplus, MKLDNN, paddle::platform::CPUPlace,
    ops::MKLDNNActivationKernel<ops::SoftplusMKLDNNFunctor<float>>);