seresnext_net.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle.fluid as fluid

import paddle.fluid.layers.ops as ops
from paddle.fluid.initializer import init_on_cpu
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from simple_nets import init_data
import math
import os
os.environ['CPU_NUM'] = str(4)

# FIXME(zcd): If the neural net has dropout_op, the output of ParallelExecutor
# and Executor is different. Because, for ParallelExecutor, the dropout_op of
# the neural net will be copied N copies(N is the number of device). This will
# lead to the random numbers generated by ParallelExecutor and Executor are different.
# So, if we compare the loss of ParallelExecutor and Executor, we should remove the
# dropout_op.
remove_dropout = False

# FIXME(zcd): If the neural net has batch_norm, the output of ParallelExecutor
# and Executor is different.
remove_bn = False

remove_dropout = True
remove_bn = True


def squeeze_excitation(input, num_channels, reduction_ratio):
    # pool = fluid.layers.pool2d(
    #    input=input, pool_size=0, pool_type='avg', global_pooling=True)
    conv = input
    shape = conv.shape
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)

    squeeze = fluid.layers.fc(input=pool,
                              size=num_channels // reduction_ratio,
                              act='relu')
    excitation = fluid.layers.fc(input=squeeze,
                                 size=num_channels,
                                 act='sigmoid')
    scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
    return scale


def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
                  act=None):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) // 2,
        groups=groups,
        act=None,
        bias_attr=False)
    return conv if remove_bn else fluid.layers.batch_norm(
        input=conv, act=act, momentum=0.1)


def shortcut(input, ch_out, stride):
    ch_in = input.shape[1]
    if ch_in != ch_out:
        if stride == 1:
            filter_size = 1
        else:
            filter_size = 3
        return conv_bn_layer(input, ch_out, filter_size, stride)
    else:
        return input


def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
    # The number of first 1x1 convolutional channels for each bottleneck build block
    # was halved to reduce the compution cost.
    conv0 = conv_bn_layer(
        input=input, num_filters=num_filters, filter_size=1, act='relu')
    conv1 = conv_bn_layer(
        input=conv0,
        num_filters=num_filters * 2,
        filter_size=3,
        stride=stride,
        groups=cardinality,
        act='relu')
    conv2 = conv_bn_layer(
        input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
    scale = squeeze_excitation(
        input=conv2,
        num_channels=num_filters * 2,
        reduction_ratio=reduction_ratio)

    short = shortcut(input, num_filters * 2, stride)

    return fluid.layers.elementwise_add(x=short, y=scale, act='relu')


img_shape = [3, 224, 224]


def SE_ResNeXt50Small(use_feed):

    img = fluid.layers.data(name='image', shape=img_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    conv = conv_bn_layer(
        input=img, num_filters=16, filter_size=3, stride=2, act='relu')
    conv = conv_bn_layer(
        input=conv, num_filters=16, filter_size=3, stride=1, act='relu')
    conv = conv_bn_layer(
        input=conv, num_filters=16, filter_size=3, stride=1, act='relu')
    conv = fluid.layers.pool2d(
        input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

    cardinality = 32
    reduction_ratio = 16
    depth = [3, 4, 6, 3]
    num_filters = [128, 256, 512, 1024]

    for block in range(len(depth)):
        for i in range(depth[block]):
            conv = bottleneck_block(
                input=conv,
                num_filters=num_filters[block],
                stride=2 if i == 0 and block != 0 else 1,
                cardinality=cardinality,
                reduction_ratio=reduction_ratio)

    shape = conv.shape
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)
    dropout = pool if remove_dropout else fluid.layers.dropout(
        x=pool, dropout_prob=0.2, seed=1)
    # Classifier layer:
    prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def cosine_decay(learning_rate, step_each_epoch, epochs=120):
    """
    Applies cosine decay to the learning rate.
    lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
    """
    global_step = _decay_step_counter()

    with init_on_cpu():
        epoch = ops.floor(global_step / step_each_epoch)
        decayed_lr = learning_rate * \
                     (ops.cos(epoch * (math.pi / epochs)) + 1)/2
    return decayed_lr


def optimizer(learning_rate=0.01):
    optimizer = fluid.optimizer.Momentum(
        learning_rate=cosine_decay(
            learning_rate=learning_rate, step_each_epoch=2, epochs=1),
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(1e-4))
    return optimizer


model = SE_ResNeXt50Small


def batch_size():
    return 12


def iter(use_cuda):
    if use_cuda:
        return 10
    return 2


gpu_img, gpu_label = init_data(
    batch_size=batch_size(), img_shape=img_shape, label_range=999)
cpu_img, cpu_label = init_data(
    batch_size=batch_size(), img_shape=img_shape, label_range=999)
feed_dict_gpu = {"image": gpu_img, "label": gpu_label}
feed_dict_cpu = {"image": cpu_img, "label": cpu_label}


def feed_dict(use_cuda):
    if use_cuda:
        return feed_dict_gpu
    return feed_dict_cpu