sequence_erase_op.cu 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/operators/sequence_erase_op.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
using LoDTensor = framework::LoDTensor;

template <typename T>
__global__ void LabelErasedIdx(const T* in_dat, const int in_len,
                               const T* tokens, const int tokens_len,
                               int* num_erased) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if (index < in_len) {
    int erased = 0;
    for (int i = 0; i < tokens_len; ++i) {
      if (in_dat[index] == tokens[i]) {
        erased = 1;
      }
    }
    num_erased[index + 1] = erased;
    if (index == 0) {
      num_erased[0] = 0;
    }
  }
}

template <typename T>
__global__ void GetOutLod(const T* num_erased, const int* in_lod,
                          const int lod_len, int* out_lod0) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if (index < lod_len) {
    out_lod0[index] = in_lod[index] - num_erased[in_lod[index]];
  }
}

template <typename T>
__global__ void SetOutput(const T* in_dat, const int in_len,
                          const int* num_erased, T* out_dat) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if (index < in_len) {
    if (in_dat[index] != in_dat[index + 1]) {
      out_dat[index - num_erased[index]] = in_dat[index];
    }
  }
}

template <typename T>
class SequenceEraseOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");

    auto lod = in->lod();
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
73 74
    PADDLE_ENFORCE_EQ(lod[0].back(), (size_t)in->numel(),
                      "The actual size mismatches with the LoD information.");
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    auto tokens = ctx.Attr<std::vector<T>>("tokens");
    auto tokens_len = tokens.size();
    auto in_len = in->numel();
    auto in_dat = in->data<T>();
    auto lod0 = lod[0];

    thrust::host_vector<T> host_tokens(tokens_len);
    for (size_t i = 0; i < tokens.size(); ++i) {
      host_tokens[i] = tokens[i];
    }
    thrust::device_vector<T> dev_tokens = host_tokens;
    thrust::device_vector<int> num_erased(in_len + 1);

    T* dev_tokens_ptr = thrust::raw_pointer_cast(dev_tokens.data());
    int* num_erased_ptr = thrust::raw_pointer_cast(num_erased.data());

    auto stream = ctx.cuda_device_context().stream();
    LabelErasedIdx<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
                     PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
        in_dat, in_len, dev_tokens_ptr, tokens_len, num_erased_ptr);
    thrust::inclusive_scan(num_erased.begin() + 1, num_erased.end(),
                           num_erased.begin() + 1);

Y
Yibing Liu 已提交
98
    // Calc LoD
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    auto lod_len = lod0.size();
    thrust::host_vector<int> host_lod(lod_len);
    for (size_t i = 0; i < lod_len; ++i) {
      host_lod[i] = lod0[i];
    }
    thrust::device_vector<int> dev_in_lod = host_lod;
    thrust::device_vector<int> dev_out_lod(lod_len);
    int* dev_in_lod_ptr = thrust::raw_pointer_cast(dev_in_lod.data());
    int* dev_out_lod_ptr = thrust::raw_pointer_cast(dev_out_lod.data());
    GetOutLod<<<(lod_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
                PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
        num_erased_ptr, dev_in_lod_ptr, lod_len, dev_out_lod_ptr);
    thrust::host_vector<int> host_out_lod = dev_out_lod;
    std::vector<int> out_lod0(lod_len, 0);
    for (size_t i = 0; i < lod_len; i++) {
      out_lod0[i] = host_out_lod[i];
    }
    framework::LoD out_lod;
    out_lod.push_back(out_lod0);
Y
Yibing Liu 已提交
118
    out->set_lod(out_lod);
119 120

    // Set output
Y
Yibing Liu 已提交
121
    out->Resize({out_lod0.back(), 1});
122 123 124 125 126 127 128 129 130 131 132 133
    auto out_dat = out->mutable_data<T>(ctx.GetPlace());
    SetOutput<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
                PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_dat, in_len,
                                                      num_erased_ptr, out_dat);
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_CUDA_KERNEL(sequence_erase,
                        paddle::operators::SequenceEraseOpCUDAKernel<int32_t>);