reduce_functor.h 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include "paddle/phi/core/macros.h"
18 19
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
20
namespace phi {
21 22
namespace funcs {

F
From00 已提交
23 24
//////// Frobenius Norm Functor ///////
struct FrobeniusNormFunctor {
25 26
  template <typename DeviceContext, typename X, typename Y, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
F
From00 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    y->device(place) = ((x->square()).sum(dim)).sqrt();
  }
};

struct FrobeniusNormGradFunctor {
  template <typename DeviceContext,
            typename X,
            typename Y,
            typename DX,
            typename DY,
            typename Dim>
  void operator()(const DeviceContext& place,
                  X* x,
                  Y* y,
                  DX* dx,
                  DY* dy,
                  const Dim& dim,
                  int size) {
    dx->device(place) = y->broadcast(dim);
    dx->device(place) = *dx + dx->constant(1e-12f);
    dx->device(place) = (*x / *dx) * (dy->broadcast(dim));
  }
};

//////// Max Functor ///////
struct MaxFunctor {
  template <typename DeviceContext, typename X, typename Y, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->maximum(dim);
56 57 58 59 60 61 62 63 64 65 66
  }
};

//////// Mean Functor ///////
struct MeanFunctor {
  template <typename DeviceContext, typename X, typename Y, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->mean(dim);
  }
};

67 68 69 70 71 72 73 74
//////// Prod Functor ///////
struct ProdFunctor {
  template <typename DeviceContext, typename X, typename Y, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->prod(dim);
  }
};

F
From00 已提交
75 76
//////// Sum Functor ///////
struct SumFunctor {
77 78
  template <typename DeviceContext, typename X, typename Y, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
F
From00 已提交
79
    y->device(place) = x->sum(dim);
80 81 82
  }
};

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
//////// Min Functor ///////
struct MinFunctor {
  template <typename DeviceContext, typename X, typename Y, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->minimum(dim);
  }
};

//////// All Functor ///////
struct AllFunctor {
  template <typename DeviceContext, typename X, typename Y, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->all(dim);
  }
};

//////// Any Functor ///////
struct AnyFunctor {
  template <typename DeviceContext, typename X, typename Y, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->any(dim);
  }
};

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
struct MeanGradFunctor {
  template <typename DeviceContext,
            typename X,
            typename Y,
            typename DX,
            typename DY,
            typename Dim>
  void operator()(const DeviceContext& place,
                  X* x,
                  Y* y,
                  DX* dx,
                  DY* dy,
                  const Dim& dim,
                  int size) {
    dx->device(place) = dy->broadcast(dim) / dx->constant(size);
  }
};

struct SumGradFunctor {
  template <typename DeviceContext,
            typename X,
            typename Y,
            typename DX,
            typename DY,
            typename Dim>
  void operator()(const DeviceContext& place,
133 134
                  X* x UNUSED,
                  Y* y UNUSED,
135 136 137
                  DX* dx,
                  DY* dy,
                  const Dim& dim,
138
                  int size UNUSED) {
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    dx->device(place) = dy->broadcast(dim);
  }
};

struct ProdGradFunctor {
  template <typename DeviceContext,
            typename X,
            typename Y,
            typename DX,
            typename DY,
            typename Dim>
  void operator()(const DeviceContext& place,
                  X* x,
                  Y* y,
                  DX* dx,
                  DY* dy,
                  const Dim& dim,
156
                  int size UNUSED) {
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    dx->device(place) = dy->broadcast(dim) * y->broadcast(dim) * x->inverse();
  }
};

struct MaxOrMinGradFunctor {
  template <typename DeviceContext,
            typename X,
            typename Y,
            typename DX,
            typename DY,
            typename Dim>
  void operator()(const DeviceContext& place,
                  X* x,
                  Y* y,
                  DX* dx,
                  DY* dy,
                  const Dim& dim,
174
                  int size UNUSED) {
175 176 177 178 179
    auto equals = (*x) == y->broadcast(dim);
    auto ones = dx->constant(1);
    auto zeros = dx->constant(0);
    // If there are multiple minimum or maximum elements, the subgradient of
    // each is the set [0, 1], and we pass gradient to all of them here.
180 181
    dx->device(place) = dy->broadcast(dim).reshape(x->dimensions()) *
                        equals.select(ones, zeros);
182 183 184
  }
};

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
#define HANDLE_AXIS_DIM(BROADCAST_DIM, AXIS_DIM)                 \
  if (broadcast_dim_size == BROADCAST_DIM && rank == AXIS_DIM) { \
    AMaxOrAMinAxisIsListGradFunctor<DeviceContext,               \
                                    X,                           \
                                    Y,                           \
                                    DX,                          \
                                    DY,                          \
                                    Dim,                         \
                                    BROADCAST_DIM,               \
                                    AXIS_DIM>(                   \
        place, x, y, dx, dy, dim, axis_dim);                     \
  }

template <typename DeviceContext,
          typename X,
          typename Y,
          typename DX,
          typename DY,
          typename Dim,
          int R,
          int D>
void AMaxOrAMinAxisIsListGradFunctor(const DeviceContext& place,
                                     X* x,
                                     Y* y,
                                     DX* dx,
                                     DY* dy,
                                     const Dim& dim,
                                     const std::vector<int>& axis_dim) {
  // R is x->dimensions().size();
  // D is axis_dim->dimensions().size();
  auto axis = Eigen::array<int, D>();
  auto reshape_x = Eigen::array<int, R>();
  auto reshape_y = Eigen::array<int, R>();

  for (int i = 0; i < D; i++) axis[i] = axis_dim[i];
  for (int i = 0; i < R; i++) {
    reshape_x[i] = x->dimensions()[i];
    reshape_y[i] = y->dimensions()[i];
  }

  auto equals = (*x) == y->broadcast(dim);
  auto ones = dx->constant(1);
  auto zeros = dx->constant(0);
  auto mask = equals.select(ones, zeros);
  dx->device(place) =
      dy->broadcast(dim) * mask /
      mask.reshape(reshape_x).sum(axis).reshape(reshape_y).broadcast(dim);
}

struct AMaxOrAMinGradFunctor {
  template <typename DeviceContext,
            typename X,
            typename Y,
            typename DX,
            typename DY,
            typename Dim>
  void operator()(const DeviceContext& place,
                  X* x,
                  Y* y,
                  DX* dx,
                  DY* dy,
                  const Dim& dim,
                  int size) {
    auto equals = (*x) == y->broadcast(dim);
    auto ones = dx->constant(1);
    auto zeros = dx->constant(0);
    auto mask = equals.select(ones, zeros);

    // If there are multiple minimum or maximum elements,
    // we evenly distribute gradient between these equal values
    size_t x_numel = 1;
    for (size_t i = 0; i < x->dimensions().size(); i++)
      x_numel *= x->dimensions()[i];
    // reduce_all
    if (size == static_cast<int>(x_numel)) {
      auto equal_number = mask.sum()
                              .reshape(Eigen::array<int, 1>({1}))
                              .broadcast(Eigen::array<int, 1>({size}));
263 264
      dx->device(place) =
          dy->broadcast(dim).reshape(x->dimensions()) * mask / equal_number;
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
      return;
    }

    // compute forward reduce axis_dim by dim (which is broadcast_dim)
    std::vector<int> axis_dim;
    int broadcast_dim_size = static_cast<int>(dim.size());
    for (int i = 0; i < broadcast_dim_size; i++) {
      if (dim[i] > 1) {
        axis_dim.push_back(i);
      }
    }

    int rank = static_cast<int>(axis_dim.size());
    // axis is a int element
    if (rank == 1) {
      auto axis = Eigen::array<int, 1>({axis_dim[0]});
      dx->device(place) =
          dy->broadcast(dim) * mask /
          mask.sum(axis).reshape(dy->dimensions()).broadcast(dim);
      return;
    }
    // axis is list, HANDLE_AXIS_DIM(broadcast_dim_size, rank)
    HANDLE_AXIS_DIM(3, 2);
    HANDLE_AXIS_DIM(4, 2);
    HANDLE_AXIS_DIM(4, 3);
    // comments for accelerating compiling temporarily.
    // HANDLE_AXIS_DIM(5, 2);
    // HANDLE_AXIS_DIM(5, 3);
    // HANDLE_AXIS_DIM(5, 4);
    // HANDLE_AXIS_DIM(6, 2);
    // HANDLE_AXIS_DIM(6, 3);
    // HANDLE_AXIS_DIM(6, 4);
    // HANDLE_AXIS_DIM(6, 5);
  }
};

301
}  // namespace funcs
302
}  // namespace phi