window.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import math
from typing import List
from typing import Tuple
from typing import Union

import paddle
from paddle import Tensor


def _cat(x: List[Tensor], data_type: str) -> Tensor:
    l = [paddle.to_tensor(_, data_type) for _ in x]
    return paddle.concat(l)


def _acosh(x: Union[Tensor, float]) -> Tensor:
    if isinstance(x, float):
        return math.log(x + math.sqrt(x**2 - 1))
    return paddle.log(x + paddle.sqrt(paddle.square(x) - 1))


def _extend(M: int, sym: bool) -> bool:
34
    """Extend window by 1 sample if needed for DFT-even symmetry."""
35 36 37 38 39 40 41
    if not sym:
        return M + 1, True
    else:
        return M, False


def _len_guards(M: int) -> bool:
42
    """Handle small or incorrect window lengths."""
43 44 45 46 47 48 49
    if int(M) != M or M < 0:
        raise ValueError('Window length M must be a non-negative integer')

    return M <= 1


def _truncate(w: Tensor, needed: bool) -> Tensor:
50
    """Truncate window by 1 sample if needed for DFT-even symmetry."""
51 52 53 54 55 56
    if needed:
        return w[:-1]
    else:
        return w


57 58 59
def _general_gaussian(
    M: int, p, sig, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
60 61 62 63
    """Compute a window with a generalized Gaussian shape.
    This function is consistent with scipy.signal.windows.general_gaussian().
    """
    if _len_guards(M):
64
        return paddle.ones((M,), dtype=dtype)
65 66 67
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
68
    w = paddle.exp(-0.5 * paddle.abs(n / sig) ** (2 * p))
69 70 71 72

    return _truncate(w, needs_trunc)


73 74 75
def _general_cosine(
    M: int, a: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
76 77 78 79
    """Compute a generic weighted sum of cosine terms window.
    This function is consistent with scipy.signal.windows.general_cosine().
    """
    if _len_guards(M):
80
        return paddle.ones((M,), dtype=dtype)
81 82
    M, needs_trunc = _extend(M, sym)
    fac = paddle.linspace(-math.pi, math.pi, M, dtype=dtype)
83
    w = paddle.zeros((M,), dtype=dtype)
84 85 86 87 88
    for k in range(len(a)):
        w += a[k] * paddle.cos(k * fac)
    return _truncate(w, needs_trunc)


89 90 91
def _general_hamming(
    M: int, alpha: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
92 93 94
    """Compute a generalized Hamming window.
    This function is consistent with scipy.signal.windows.general_hamming()
    """
95
    return _general_cosine(M, [alpha, 1.0 - alpha], sym, dtype=dtype)
96 97


98 99 100
def _taylor(
    M: int, nbar=4, sll=30, norm=True, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
101 102 103 104 105
    """Compute a Taylor window.
    The Taylor window taper function approximates the Dolph-Chebyshev window's
    constant sidelobe level for a parameterized number of near-in sidelobes.
    """
    if _len_guards(M):
106
        return paddle.ones((M,), dtype=dtype)
107 108 109 110
    M, needs_trunc = _extend(M, sym)
    # Original text uses a negative sidelobe level parameter and then negates
    # it in the calculation of B. To keep consistent with other methods we
    # assume the sidelobe level parameter to be positive.
111
    B = 10 ** (sll / 20)
112
    A = _acosh(B) / math.pi
113
    s2 = nbar**2 / (A**2 + (nbar - 0.5) ** 2)
114 115
    ma = paddle.arange(1, nbar, dtype=dtype)

116
    Fm = paddle.empty((nbar - 1,), dtype=dtype)
117 118 119 120 121
    signs = paddle.empty_like(ma)
    signs[::2] = 1
    signs[1::2] = -1
    m2 = ma * ma
    for mi in range(len(ma)):
122 123 124
        numer = signs[mi] * paddle.prod(
            1 - m2[mi] / s2 / (A**2 + (ma - 0.5) ** 2)
        )
125
        if mi == 0:
126
            denom = 2 * paddle.prod(1 - m2[mi] / m2[mi + 1 :])
127 128 129
        elif mi == len(ma) - 1:
            denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi])
        else:
130 131 132 133 134
            denom = (
                2
                * paddle.prod(1 - m2[mi] / m2[:mi])
                * paddle.prod(1 - m2[mi] / m2[mi + 1 :])
            )
135 136 137 138 139 140

        Fm[mi] = numer / denom

    def W(n):
        return 1 + 2 * paddle.matmul(
            Fm.unsqueeze(0),
141 142
            paddle.cos(2 * math.pi * ma.unsqueeze(1) * (n - M / 2.0 + 0.5) / M),
        )
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

    w = W(paddle.arange(0, M, dtype=dtype))

    # normalize (Note that this is not described in the original text [1])
    if norm:
        scale = 1.0 / W((M - 1) / 2)
        w *= scale
    w = w.squeeze()
    return _truncate(w, needs_trunc)


def _hamming(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Hamming window.
    The Hamming window is a taper formed by using a raised cosine with
    non-zero endpoints, optimized to minimize the nearest side lobe.
    """
    return _general_hamming(M, 0.54, sym, dtype=dtype)


def _hann(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Hann window.
    The Hann window is a taper formed by using a raised cosine or sine-squared
    with ends that touch zero.
    """
    return _general_hamming(M, 0.5, sym, dtype=dtype)


170 171 172
def _tukey(
    M: int, alpha=0.5, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
173 174 175 176
    """Compute a Tukey window.
    The Tukey window is also known as a tapered cosine window.
    """
    if _len_guards(M):
177
        return paddle.ones((M,), dtype=dtype)
178 179

    if alpha <= 0:
180
        return paddle.ones((M,), dtype=dtype)
181 182 183 184 185 186 187
    elif alpha >= 1.0:
        return hann(M, sym=sym)

    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype)
    width = int(alpha * (M - 1) / 2.0)
188 189 190
    n1 = n[0 : width + 1]
    n2 = n[width + 1 : M - width - 1]
    n3 = n[M - width - 1 :]
191 192 193

    w1 = 0.5 * (1 + paddle.cos(math.pi * (-1 + 2.0 * n1 / alpha / (M - 1))))
    w2 = paddle.ones(n2.shape, dtype=dtype)
194 195 196 197
    w3 = 0.5 * (
        1
        + paddle.cos(math.pi * (-2.0 / alpha + 1 + 2.0 * n3 / alpha / (M - 1)))
    )
198 199 200 201 202
    w = paddle.concat([w1, w2, w3])

    return _truncate(w, needs_trunc)


203 204 205
def _kaiser(
    M: int, beta: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
206 207 208 209 210 211
    """Compute a Kaiser window.
    The Kaiser window is a taper formed by using a Bessel function.
    """
    raise NotImplementedError()


212 213 214
def _gaussian(
    M: int, std: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
215 216 217 218
    """Compute a Gaussian window.
    The Gaussian widows has a Gaussian shape defined by the standard deviation(std).
    """
    if _len_guards(M):
219
        return paddle.ones((M,), dtype=dtype)
220 221 222 223
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
    sig2 = 2 * std * std
224
    w = paddle.exp(-(n**2) / sig2)
225 226 227 228

    return _truncate(w, needs_trunc)


229 230 231 232
def _exponential(
    M: int, center=None, tau=1.0, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
    """Compute an exponential (or Poisson) window."""
233 234 235
    if sym and center is not None:
        raise ValueError("If sym==True, center must be None.")
    if _len_guards(M):
236
        return paddle.ones((M,), dtype=dtype)
237 238 239 240 241 242 243 244 245 246 247 248
    M, needs_trunc = _extend(M, sym)

    if center is None:
        center = (M - 1) / 2

    n = paddle.arange(0, M, dtype=dtype)
    w = paddle.exp(-paddle.abs(n - center) / tau)

    return _truncate(w, needs_trunc)


def _triang(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
249
    """Compute a triangular window."""
250
    if _len_guards(M):
251
        return paddle.ones((M,), dtype=dtype)
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(1, (M + 1) // 2 + 1, dtype=dtype)
    if M % 2 == 0:
        w = (2 * n - 1.0) / M
        w = paddle.concat([w, w[::-1]])
    else:
        w = 2 * n / (M + 1.0)
        w = paddle.concat([w, w[-2::-1]])

    return _truncate(w, needs_trunc)


def _bohman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Bohman window.
    The Bohman window is the autocorrelation of a cosine window.
    """
    if _len_guards(M):
270
        return paddle.ones((M,), dtype=dtype)
271 272 273 274
    M, needs_trunc = _extend(M, sym)

    fac = paddle.abs(paddle.linspace(-1, 1, M, dtype=dtype)[1:-1])
    w = (1 - fac) * paddle.cos(math.pi * fac) + 1.0 / math.pi * paddle.sin(
275 276
        math.pi * fac
    )
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    w = _cat([0, w, 0], dtype)

    return _truncate(w, needs_trunc)


def _blackman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Blackman window.
    The Blackman window is a taper formed by using the first three terms of
    a summation of cosines. It was designed to have close to the minimal
    leakage possible.  It is close to optimal, only slightly worse than a
    Kaiser window.
    """
    return _general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype)


def _cosine(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
293
    """Compute a window with a simple cosine shape."""
294
    if _len_guards(M):
295
        return paddle.ones((M,), dtype=dtype)
296
    M, needs_trunc = _extend(M, sym)
297
    w = paddle.sin(math.pi / M * (paddle.arange(0, M, dtype=dtype) + 0.5))
298 299 300 301

    return _truncate(w, needs_trunc)


302 303 304 305 306 307
def get_window(
    window: Union[str, Tuple[str, float]],
    win_length: int,
    fftbins: bool = True,
    dtype: str = 'float64',
) -> Tensor:
308 309 310 311 312 313 314 315 316 317
    """Return a window of a given length and type.

    Args:
        window (Union[str, Tuple[str, float]]): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'.
        win_length (int): Number of samples.
        fftbins (bool, optional): If True, create a "periodic" window. Otherwise, create a "symmetric" window, for use in filter design. Defaults to True.
        dtype (str, optional): The data type of the return window. Defaults to 'float64'.

    Returns:
        Tensor: The window represented as a tensor.
Y
YangZhou 已提交
318 319 320 321 322 323 324 325 326 327 328

    Examples:
        .. code-block:: python

            import paddle

            n_fft = 512
            cosine_window = paddle.audio.functional.get_window('cosine', n_fft)

            std = 7
            gussian_window = paddle.audio.functional.get_window(('gaussian',std), n_fft)
329 330 331 332 333 334 335 336 337 338
    """
    sym = not fftbins

    args = ()
    if isinstance(window, tuple):
        winstr = window[0]
        if len(window) > 1:
            args = window[1:]
    elif isinstance(window, str):
        if window in ['gaussian', 'exponential']:
339 340 341 342
            raise ValueError(
                "The '" + window + "' window needs one or "
                "more parameters -- pass a tuple."
            )
343 344 345
        else:
            winstr = window
    else:
346 347 348
        raise ValueError(
            "%s as window type is not supported." % str(type(window))
        )
349 350 351 352 353 354

    try:
        winfunc = eval('_' + winstr)
    except NameError as e:
        raise ValueError("Unknown window type.") from e

355
    params = (win_length,) + args
356 357
    kwargs = {'sym': sym}
    return winfunc(*params, dtype=dtype, **kwargs)