completion.py 84.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17

18
from paddle.distributed.fleet.meta_optimizers.common import OpRole
19 20
from paddle.fluid import core

21 22 23 24
from .dist_attribute import (
    OperatorDistributedAttribute,
    TensorDistributedAttribute,
)
25
from .dist_context import _node_id
26
from .operators import find_compatible_distributed_operator_impls
27
from .process_group import get_world_process_group
28
from .process_mesh import ProcessMesh, compute_compatible_process_mesh
29 30 31 32 33 34
from .utils import (
    __no_shape_var_type__,
    get_logger,
    is_gradient_clip_op,
    is_naive_data_parallel,
)
35 36


37 38 39 40
def compute_compatible_dim_mapping(dim_mapping_list):
    """Compute the compatible dim mapping given a list of dim mapping."""
    if not dim_mapping_list:
        return None
41

42
    def _compute_compatible_dim_mapping_of_two(dm1, dm2):
43 44 45 46 47 48 49 50 51 52
        if dm1 == -1:
            return True, dm2
        if dm2 == -1:
            return True, dm1
        if dm1 == dm2:
            return True, dm1
        return False, None

    compatible_result = -1
    for mapping in dim_mapping_list:
53
        compatible, compatible_result = _compute_compatible_dim_mapping_of_two(
54 55
            compatible_result, mapping
        )
56 57 58 59 60 61 62
        if not compatible:
            return None
    return compatible_result


def compute_compatible_dims_mapping(dims_mapping_list):
    """Compute the compatible dims mapping given a list of dims mapping.
63
    Each of dims mapping is also a list.
64
    """
65 66 67 68 69 70 71 72 73 74 75
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        if dims_mapping is None:
            return None
        if len(dims_mapping) != length:
            return None
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
76 77
            list(dim_mappings)
        )
78 79 80 81 82 83
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


84 85 86 87 88 89
def merge_process_mesh_two(pm1, pm2):
    process_set1 = set()
    process_set2 = set()
    if pm1 is None and pm2 is None:
        return None
    if pm1 is not None:
90
        process_set1 = set(pm1.process_ids)
91
    if pm2 is not None:
92
        process_set2 = set(pm2.process_ids)
93 94 95 96 97
    merged_process_set = process_set1.union(process_set2)
    merged_process_mesh = ProcessMesh(list(merged_process_set))
    return merged_process_mesh


98 99 100 101
def _validate_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    for i in range(len(dims_mapping)):
102
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(process_mesh.shape):
103
            return False
104
    for i in range(len(process_mesh.shape)):
105 106 107 108 109
        if dims_mapping.count(i) > 1:
            return False
    return True


110 111 112 113
class Completer:
    def __init__(self, dist_context):
        assert dist_context is not None
        self._dist_context = dist_context
114
        self._has_prepared = False
115
        self._logger = get_logger(logging.INFO, "Completer")
116 117 118 119 120 121 122

    def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True):
        changed = False
        if (not tensor_node.is_var()) or (tensor_node.var() is None):
            return False
        tensor_desc = tensor_node.var()
        # Skip reader tensor
Z
zhaoyingli 已提交
123
        if tensor_desc.type() in __no_shape_var_type__:
124 125
            return False
        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
126 127
            tensor_node
        )
128 129 130 131 132 133 134 135
        assert tensor_dist_attr is not None
        if tensor_dist_attr.is_annotated("dims_mapping"):
            return False
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        if fwd:
            dims_mapping_list = []
            for pred_op_node in tensor_node.inputs:
                if pred_op_node.op() is not None:
136 137 138 139 140 141
                    if (
                        pred_op_node.op().type() == "create_py_reader"
                        or pred_op_node.op().type()
                        == "create_double_buffer_reader"
                        or pred_op_node.op().type() == "read"
                    ):
142
                        continue
143 144 145 146 147 148 149 150 151
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            pred_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
152
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
153 154
                            tensor_desc.name()
                        )
155 156 157
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
158 159 160 161 162
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
163
                return False
164 165 166
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
167
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
168 169
                changed = True
        else:
170 171 172
            dims_mapping_list = []
            for succ_op_node in tensor_node.outputs:
                if succ_op_node.op() is not None:
173 174 175 176 177 178
                    if (
                        succ_op_node.op().type() == "create_py_reader"
                        or succ_op_node.op().type()
                        == "create_double_buffer_reader"
                        or succ_op_node.op().type() == "read"
                    ):
179
                        continue
180 181 182 183 184 185 186 187 188
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            succ_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
189
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
190 191
                            tensor_desc.name()
                        )
192 193 194
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
195 196 197 198 199
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
200
                return False
201 202 203
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
204
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
205
                changed = True
206
        return changed
207

208 209 210 211 212 213
    def _update_op_node_dims_mapping(self, op_node, fwd=True):
        changed = False
        if (not op_node.is_op()) or (op_node.op() is None):
            return False
        # Skip reader op
        op_desc = op_node.op()
214 215 216 217 218 219
        if (
            op_desc.type() == "create_py_reader"
            or op_desc.type() == "create_double_buffer_reader"
            or op_desc.type() == "while"
            or op_desc.type() == "read"
        ):
220 221 222
            return False
        dist_op = self._dist_context.get_dist_op_for_graph(op_node)
        op_dist_attr = dist_op.dist_attr
223
        original_op_dist_attr = copy.deepcopy(op_dist_attr)
224 225
        if fwd:
            for tensor_node in op_node.inputs:
226
                if tensor_node.is_var() and tensor_node.var() is not None:
227 228 229 230
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_input_dims_mapping(
231 232
                        tensor_desc.name()
                    ):
233
                        continue
234 235 236 237 238 239 240 241 242
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
243 244
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
245 246 247 248 249 250 251
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
252
                        if not _validate_dims_mapping(
253 254
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
255
                            continue
256 257 258
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
259
                            op_dist_attr.set_input_dims_mapping(
260 261
                                tensor_desc.name(), compatible_dims_mapping
                            )
262 263
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
264 265 266
            op_dist_impls = find_compatible_distributed_operator_impls(
                dist_op, fwd=True
            )
267 268 269 270 271 272 273 274
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
275 276 277 278
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
279 280 281 282 283 284 285 286
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
287
                    else:
288 289 290 291 292 293 294 295
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
296
        else:
297
            for tensor_node in op_node.outputs:
298
                if tensor_node.is_var() and tensor_node.var() is not None:
299 300 301 302
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_output_dims_mapping(
303 304
                        tensor_desc.name()
                    ):
305
                        continue
306 307 308 309 310 311 312 313 314
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
315 316
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
317 318 319 320 321 322 323
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
324
                        if not _validate_dims_mapping(
325 326
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
327
                            continue
328 329 330
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
331
                            op_dist_attr.set_output_dims_mapping(
332 333
                                tensor_desc.name(), compatible_dims_mapping
                            )
334 335
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
336
            op_dist_impls = find_compatible_distributed_operator_impls(
337 338
                dist_op, fwd=False
            )
339 340 341 342 343 344 345 346
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
347 348 349 350
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
351 352 353 354 355 356 357 358
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
359
                    else:
360 361 362 363 364 365 366 367
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
368
        return changed
369

370 371 372 373
    def _update_dims_mapping_between_graphs(self):
        changed = False
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
374 375
                parent_node
            )
376
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
377 378 379 380 381 382
                child_node
            )
            if (
                parent_node_dist_attr.process_mesh
                != child_node_dist_attr.process_mesh
            ):
383
                continue
384 385 386
            parent_node_dims_mapping = parent_node_dist_attr.dims_mapping
            child_node_dims_mapping = child_node_dist_attr.dims_mapping
            compatible_dims_mapping = compute_compatible_dims_mapping(
387 388 389 390 391
                [parent_node_dims_mapping, child_node_dims_mapping]
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, parent_node_dist_attr.process_mesh
            ):
392
                return False
393 394 395
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != parent_node_dims_mapping
            ):
396 397
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
398 399 400
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != child_node_dims_mapping
            ):
401
                child_node_dist_attr.dims_mapping = compatible_dims_mapping
402 403
                changed = True
        return changed
404

405 406 407
    def _update_dims_mapping_for_special(self):
        # Set the dims_mapping of a tensor to the dims_mapping inside the op which produces it
        op_nodes = self._dist_context._serial_ordered_op_nodes
408 409
        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
410 411 412
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
413
        ]
414
        for op_node in op_nodes:
415 416 417 418
            if (
                op_node.op() is not None
                and op_node.op().type() in related_reader_ops
            ):
419
                continue
420 421 422 423 424 425
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() and tensor_node.var() is not None:
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
426 427 428 429 430 431 432 433 434
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
435
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
436 437
                            tensor_desc.name()
                        )
438 439
                        tensor_dist_attr.dims_mapping = op_dims_mapping

440 441 442 443
    def _update_dims_mapping(self):
        # Complete dims_mapping for each node
        reach_fix_point = False
        while not reach_fix_point:
444
            changed = False
445
            for is_fwd in [True, False]:
446 447 448 449 450
                all_nodes = (
                    self._dist_context.serial_ordered_nodes
                    if is_fwd
                    else reversed(self._dist_context.serial_ordered_nodes)
                )
451 452 453
                for node in all_nodes:
                    if node.is_var() and node.var() is not None:
                        tensor_changed = self._update_tensor_node_dims_mapping(
454 455
                            node, fwd=is_fwd
                        )
456 457 458 459
                        if tensor_changed:
                            changed = True
                    if node.is_op() and node.op() is not None:
                        op_changed = self._update_op_node_dims_mapping(
460 461
                            node, fwd=is_fwd
                        )
462 463
                        if op_changed:
                            changed = True
464 465 466
                graph_changed = self._update_dims_mapping_between_graphs()
                if graph_changed:
                    changed = True
467
            if changed:
468
                reach_fix_point = False
469
            else:
470
                reach_fix_point = True
471
        # NOTE: this will be removed after changing the reshard rule
472
        self._update_dims_mapping_for_special()
473

474 475 476 477 478 479
    def _update_process_mesh_by_nearest(self, op_node, nearest_op_node):
        op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
        # Set the process mesh of the op node by its nearest op node
        if not op_dist_attr.is_annotated("process_mesh"):
            process_mesh = op_dist_attr.process_mesh
            nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph(
480 481
                nearest_op_node
            )
482 483
            nearest_process_mesh = nearest_op_dis_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh(
484 485 486 487 488 489
                [process_mesh, nearest_process_mesh]
            )
            if (
                compatible_process_mesh is not None
                and process_mesh != compatible_process_mesh
            ):
490 491 492 493 494 495 496
                op_dist_attr.process_mesh = compatible_process_mesh
        # Skip the process_mesh setting of inputs and outputs of while_op
        if op_dist_attr.op_type == "while":
            return
        # Set the process mesh of the op node's leaf-inputs
        for tensor_node in op_node.inputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
497 498 499 500 501
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
502 503 504 505 506 507
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                # Skip the non-leaf var node
                if len(tensor_node.inputs) != 0:
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
508 509 510 511 512 513
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
514
                    tensor_dist_attr.process_mesh = compatible_process_mesh
515
                # Set the process mesh of the op node's outputs
516 517
        for tensor_node in op_node.outputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
518 519 520 521 522
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
523 524 525
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
526 527 528 529 530 531
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
532 533 534 535 536
                    tensor_dist_attr.process_mesh = compatible_process_mesh

    def _update_process_mesh_for_specials(self):
        def _find_nearest_tensor_node_before(nodes, idx, var_name):
            for node in reversed(nodes[:idx]):
537 538 539 540 541
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
542 543 544
                    return node

        def _find_nearest_tensor_node_after(nodes, idx, var_name):
545 546 547 548 549 550
            for node in nodes[idx + 1 :]:
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
551 552 553 554 555 556 557 558 559 560 561 562 563 564
                    return node

        def _find_nodes_related_to_cond(source_node):
            related_nodes = []
            visited = set()
            frontier = list()
            frontier.append(source_node)
            # BFS
            while len(frontier) != 0:
                cur = frontier[0]
                frontier = frontier[1:]
                if _node_id(cur) in visited:
                    continue
                # TODO: need more restrictions
565 566
                neighbors = cur.inputs + cur.outputs
                for node in neighbors:
567
                    if node.is_var() and node.var() is not None:
568 569 570 571
                        if (
                            node.var().type() != core.VarDesc.VarType.READER
                            and len(node.var().shape()) == 1
                        ):
572 573 574 575
                            frontier.append(node)
                            related_nodes.append(node)
                    if node.is_op() and node.op() is not None:
                        flag = True
576 577 578 579 580
                        if (
                            node.op().type() == "create_py_reader"
                            or node.op().type() == "create_double_buffer_reader"
                            or node.op().type() == "read"
                        ):
581 582
                            flag = False
                        for tensor_node in node.inputs:
583 584 585 586 587 588
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
Z
zhaoyingli 已提交
589
                                    in __no_shape_var_type__
590 591
                                    or len(tensor_node.var().shape()) != 1
                                ):
592 593 594
                                    flag = False
                                    break
                        for tensor_node in node.outputs:
595 596 597 598 599 600
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
Z
zhaoyingli 已提交
601
                                    in __no_shape_var_type__
602 603
                                    or len(tensor_node.var().shape()) != 1
                                ):
604 605 606 607 608 609 610 611
                                    flag = False
                                    break
                        if flag:
                            frontier.append(node)
                            related_nodes.append(node)
                visited.add(_node_id(cur))
            return related_nodes

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        def _make_dims_mapping_replicate(dist_attr):
            if isinstance(dist_attr, TensorDistributedAttribute):
                for i, _ in enumerate(dist_attr.dims_mapping):
                    dist_attr.dims_mapping[i] = -1
            if isinstance(dist_attr, OperatorDistributedAttribute):
                for arg_name in dist_attr.inputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                for arg_name in dist_attr.outputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
628 629 630
                    dist_attr.set_output_dims_mapping(
                        arg_name, new_dims_mapping
                    )
631

632 633 634
        # Amend the process meshes related to while_op
        for while_op_node, while_op_node_idx in self._while_op_nodes.values():
            sub_graph_id = while_op_node.op()._block_attr_id("sub_block")
635
            sub_graph = self._dist_context.serial_graph.get_sub_graph(
636 637
                sub_graph_id
            )
638 639
            sub_graph_nodes = list(sub_graph.all_nodes())
            while_dist_op = self._dist_context.get_dist_op_for_graph(
640 641
                while_op_node
            )
642 643 644 645 646
            while_op_dist_attr = while_dist_op.dist_attr

            # Step 1: set the process mesh of while_op to the merged process mesh of its subblock
            merged_process_mesh = while_op_dist_attr.process_mesh
            for node in sub_graph_nodes:
647 648 649
                if (node.is_var() and node.var() is not None) or (
                    node.is_op() and node.op() is not None
                ):
650 651
                    dist_attr = self._dist_context.get_dist_attr_for_graph(node)
                    merged_process_mesh = merge_process_mesh_two(
652 653
                        merged_process_mesh, dist_attr.process_mesh
                    )
654
            while_op_dist_attr.process_mesh = merged_process_mesh
655
            _make_dims_mapping_replicate(while_op_dist_attr)
656 657 658 659 660 661 662

            # Step 2: set the related nodes of while_op to the process mesh of while_op
            # Step 2.1: Find related nodes of cond var the graph of while_op
            cond_tensor_related_nodes = []
            cond_tensor_name = while_op_node.op().input("Condition")[0]
            cond_tensor_node = None
            for node in while_op_node.inputs:
663 664 665 666 667
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                ):
668 669 670 671 672
                    cond_tensor_node = node
                    cond_tensor_related_nodes.append(cond_tensor_node)
                    break

            cond_tensor_related_nodes.extend(
673 674
                _find_nodes_related_to_cond(cond_tensor_node)
            )
675 676 677 678

            # Step 2.2: Find related nodes of cond var in the subgraph of while_op
            cond_tensor_node = None
            for node in reversed(sub_graph_nodes):
679 680 681 682 683 684
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                    and len(node.outputs) == 0
                ):
685 686 687 688
                    cond_tensor_node = node
                    break

            cond_tensor_related_nodes.extend(
689 690
                _find_nodes_related_to_cond(cond_tensor_node)
            )
691 692 693 694
            # Step 2.3: Add the StepScops output of while_op
            stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0]
            stepscopes_tensor_node = None
            for output_node in while_op_node.outputs:
695 696 697 698 699
                if (
                    output_node.is_var()
                    and output_node.var() is not None
                    and output_node.var().name() == stepscopes_tensor_name
                ):
700 701 702 703 704
                    stepscopes_tensor_node = output_node
            cond_tensor_related_nodes.append(stepscopes_tensor_node)
            # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op
            for node in cond_tensor_related_nodes:
                tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
705 706
                    node
                )
707
                tensor_dist_attr.process_mesh = merged_process_mesh
708
                _make_dims_mapping_replicate(tensor_dist_attr)
709 710 711

            # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes
            while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs
712 713 714 715
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_inputs_dist_attrs.items():
716
                nearest_tensor_node = _find_nearest_tensor_node_before(
717 718 719 720 721 722 723 724 725 726 727 728
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
729 730 731

            # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes
            while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs
732 733 734 735
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_outputs_dist_attrs.items():
736
                nearest_tensor_node = _find_nearest_tensor_node_before(
737 738 739 740
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
741 742 743
                if nearest_tensor_node is None:
                    nearest_tensor_node = _find_nearest_tensor_node_after(
                        self._dist_context.serial_ordered_nodes,
744 745 746 747 748 749 750 751 752 753 754
                        while_op_node_idx,
                        tensor_name,
                    )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
755 756 757 758 759 760

        # Amend the process meshes related to array
        for array_node_list in self._array_nodes.values():
            merged_process_mesh = None
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
761 762
                    array_node
                )
763
                merged_process_mesh = merge_process_mesh_two(
764 765
                    merged_process_mesh, dist_attr.process_mesh
                )
766 767
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
768 769
                    array_node
                )
770
                dist_attr.process_mesh = merged_process_mesh
771 772 773 774 775
                _make_dims_mapping_replicate(dist_attr)

    def _update_process_mesh_between_graphs(self):
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
776 777
                parent_node
            )
778
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
779 780 781
                child_node
            )
            parent_node_dist_attr.process_mesh = (
782
                child_node_dist_attr.process_mesh
783 784 785 786 787 788 789 790 791 792 793 794
            )
            compatible_process_mesh = compute_compatible_process_mesh(
                [
                    parent_node_dist_attr.process_mesh,
                    child_node_dist_attr.process_mesh,
                ]
            )
            if (
                compatible_process_mesh is not None
                and parent_node_dist_attr.process_mesh
                != compatible_process_mesh
            ):
795
                parent_node_dist_attr.process_mesh = compatible_process_mesh
796 797 798 799
            if (
                compatible_process_mesh is not None
                and child_node_dist_attr.process_mesh != compatible_process_mesh
            ):
800
                child_node_dist_attr.process_mesh = compatible_process_mesh
801 802 803 804 805 806 807

    def _update_process_mesh(self):
        ordered_op_nodes = self._dist_context._serial_ordered_op_nodes

        # Step 1: Set the annotated process meshes from tensors to the first ops using them
        ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes
        for tensor_node in ordered_tensor_nodes:
808 809 810
            tensor_dist_attr = (
                self._dist_context.get_tensor_dist_attr_for_graph(tensor_node)
            )
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
            if not tensor_dist_attr.is_annotated("process_mesh"):
                continue
            first_op_node = None
            for op_node in ordered_op_nodes:
                # TODO: Need a better rule for the control flow ops.
                # For now, do not set the process mesh of while_op from its inputs
                if op_node.op().type() == "while":
                    continue
                for input_tensor_node in op_node.inputs:
                    if _node_id(tensor_node) == _node_id(input_tensor_node):
                        first_op_node = op_node
                        break
                if first_op_node is not None:
                    break
            if first_op_node is None:
                continue
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(
828 829
                first_op_node
            )
830
            if op_dist_attr is not None and not op_dist_attr.is_annotated(
831 832
                "process_mesh"
            ):
833
                compatible_process_mesh = compute_compatible_process_mesh(
834 835 836 837 838 839
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and op_dist_attr.process_mesh != compatible_process_mesh
                ):
840 841 842 843 844 845 846
                    op_dist_attr.process_mesh = compatible_process_mesh

        # Step 2: set the process meshes of ops with the nearest op before them
        # Step 2.1: find the first op node which has the process mesh
        idx_of_first_op_node_has_process_mesh = -1
        for idx, op_node in enumerate(ordered_op_nodes):
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
847 848 849 850
            if (
                op_dist_attr.process_mesh is not None
                and idx_of_first_op_node_has_process_mesh == -1
            ):
851 852 853 854 855 856
                idx_of_first_op_node_has_process_mesh = idx
                # Reuse the following method to set the related tensors for same op node
                self._update_process_mesh_by_nearest(op_node, op_node)
        # Step 2.2: set the process meshes of ops by the nearest op node after the first op node
        if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes):
            return None
857
        for idx, op_node in enumerate(
858 859
            ordered_op_nodes[idx_of_first_op_node_has_process_mesh + 1 :]
        ):
860
            original_idx = idx_of_first_op_node_has_process_mesh + idx + 1
861 862
            nearest_op_node = ordered_op_nodes[original_idx - 1]
            nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph(
863 864
                nearest_op_node
            )
865 866 867 868 869
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            assert nearest_op_dist_attr.process_mesh is not None
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)
        # Step 2.3: set the process meshes of ops by the nearest op node before the first op node
        nearest_op_node = ordered_op_nodes[
870 871
            idx_of_first_op_node_has_process_mesh
        ]
872 873 874 875 876 877
        for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]:
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)

        # Step 3: adjust the process meshes for special ops
        self._update_process_mesh_for_specials()

878
        # Step 4: adjust the process meshes between graphs
879 880
        self._update_process_mesh_between_graphs()

881
    def _prepare(self):
882 883
        if self._has_prepared:
            return
884 885 886 887 888 889 890 891 892 893 894 895 896
        self._while_op_nodes = {}
        self._array_nodes = {}
        self._node_pairs_between_graphs = []
        all_nodes = self._dist_context.serial_ordered_nodes
        for idx, node in enumerate(all_nodes):
            if node.is_op():
                if node.op().type() == "while":
                    self._while_op_nodes[_node_id(node)] = (node, idx)
                if node.op().type() == "read_from_array":
                    array_var_name = node.op().input("X")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
897 898
                    # Add the array input node
                    self._array_nodes[array_var_name].append(node.inputs[0])
899 900 901 902 903 904 905 906 907
                if node.op().type() == "write_to_array":
                    array_var_name = node.op().output("Out")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                    self._array_nodes[array_var_name].append(node.outputs[0])
            if node.is_var() and node.var() is not None:
                if node.node.graph_id() != 0:
                    for before_node in reversed(all_nodes[:idx]):
908 909 910 911 912 913 914
                        if (
                            before_node.is_var()
                            and before_node.var() is not None
                            and before_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and before_node.var().name() == node.var().name()
                        ):
915
                            self._node_pairs_between_graphs.append(
916 917 918 919 920 921 922 923 924 925
                                (before_node, node)
                            )
                    for after_node in all_nodes[idx + 1 :]:
                        if (
                            after_node.is_var()
                            and after_node.var() is not None
                            and after_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and after_node.var().name() == node.var().name()
                        ):
926
                            self._node_pairs_between_graphs.append(
927 928
                                (after_node, node)
                            )
929
        self._has_prepared = True
930

931
    def complete_forward_annotation(self, serial_main_program=None):
932
        """Complete annotation for the partial annotated serial_main_program.
933 934
        Arguments:
            serial_main_program: partial annotated serial_main_program.
935
        Returns:e
936 937 938
            serial_main_program: completed annotated serial_main_program.
        """

939 940 941
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
942
            self._dist_context._serial_main_program = serial_main_program
943

944
        if not is_naive_data_parallel(self._dist_context):
945 946 947 948 949 950 951
            self._dist_context.initialize(with_graph=True)
            self._prepare()
            self._update_process_mesh()
            self._update_dims_mapping()
            # Copy the corresponding distributed attribute from graph to serial_main_program
            self._dist_context.copy_dist_attr_from_graph_to_program()
        else:
Z
zhaoyingli 已提交
952
            self._logger.info("Default distributed attributed will be set.")
953 954 955 956
            self._dist_context.initialize(with_graph=False)
            # A fast and special completion for data parallel
            self._update_dist_attr_for_dp()

957
        # NOTE:[HighOrderGrad] update vars and ops distributed attribute in high order gradient
958
        self._complete_high_order_grad_annotation(serial_main_program)
959 960 961 962 963
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()
        return serial_main_program

964 965 966 967
    def _update_dist_attr_for_dp(self):
        # TODO: we must ensure the world process group contains all ranks
        ranks = get_world_process_group().ranks
        process_mesh = ProcessMesh(ranks)
968 969 970 971 972 973 974

        dist_tensors = self._dist_context._dist_tensors_for_program
        for dist_tensor in dist_tensors.values():
            dist_tensor.dist_attr.process_mesh = process_mesh

        dist_ops = self._dist_context._dist_ops_for_program
        for dist_op in dist_ops.values():
975 976 977 978
            serial_op = dist_op.serial_op
            op_dist_attr = dist_op.dist_attr
            op_dist_attr.process_mesh = process_mesh
            original_op_dist_attr = copy.deepcopy(op_dist_attr)
979

980 981 982
            for arg_name in serial_op.input_arg_names:
                serial_tensor = dist_op.get_serial_input(arg_name)
                if not serial_tensor.is_parameter:
983 984 985
                    dist_tensor = (
                        self._dist_context.get_dist_tensor_for_program(
                            serial_tensor
986 987
                        )
                    )
988 989 990 991 992 993
                    op_dist_attr = dist_op.dist_attr
                    op_dist_attr.process_mesh = (
                        dist_tensor.dist_attr.process_mesh
                    )
                    op_dist_attr.set_input_dims_mapping(
                        arg_name, dist_tensor.dist_attr.dims_mapping
994
                    )
995 996

            op_dist_impls = find_compatible_distributed_operator_impls(
997
                dist_op, fwd=True
998
            )
999 1000 1001 1002 1003
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                for op_dist_impl in op_dist_impls:
                    op_dist_impl.update_dims_mapping(dist_op)
1004 1005 1006 1007
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
                        op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
                    else:
                        dist_op.dist_attr = backup_op_dist_attr
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
            else:
                dist_op.dist_attr = original_op_dist_attr

1019 1020 1021
            for arg_name in serial_op.output_arg_names:
                op_dist_attr = dist_op.dist_attr
                serial_tensor = dist_op.get_serial_output(arg_name)
Z
zhaoyingli 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
                if serial_op.type in ["fill_constant"]:
                    old_dims_mapping = op_dist_attr.get_output_dims_mapping(
                        arg_name
                    )
                    if len(old_dims_mapping) > 0:
                        new_dims_mapping = [0] + [
                            -1 for _ in range(len(old_dims_mapping) - 1)
                        ]
                        op_dist_attr.set_output_dims_mapping(
                            arg_name, new_dims_mapping
                        )
1033 1034 1035 1036 1037 1038 1039
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
                    serial_tensor
                )
                dist_tensor.dist_attr.dims_mapping = (
                    op_dist_attr.get_output_dims_mapping(arg_name)
                )

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
    def _complete_tensor_dist_attr_by_op(self, serial_main_program=None):
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

        self._dist_context.initialize()

        self._prepare()

        has_set_dist_attr = set()

        all_nodes = self._dist_context.serial_ordered_nodes
        for node in all_nodes:
            if node.is_op():
                if node.op().type() in ["while"]:
                    continue
                dist_op = self._dist_context.get_dist_op_for_graph(node)
                op_dist_attr = dist_op.dist_attr
                for tensor_node in node.inputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        # Skip the non-leaf var node
                        if len(tensor_node.inputs) != 0:
                            continue
                        tensor_desc = tensor_node.var()
                        tensor_name = tensor_desc.name()
                        tensor = dist_op.get_serial_input(tensor_name)
                        # Use the first op to set the tensor dist attr
                        if tensor_name in has_set_dist_attr:
                            continue
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_input_dims_mapping(tensor_name)
                            if tensor.is_parameter
                            else [-1 for i in tensor_desc.shape()]
                        )
1083 1084 1085 1086 1087 1088
                        has_set_dist_attr.add(tensor_name)
                for tensor_node in node.outputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        tensor_name = tensor_node.var().name()
                        if tensor_name in has_set_dist_attr:
                            continue
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_output_dims_mapping(tensor_name)
                        )
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
                        has_set_dist_attr.add(tensor_name)

        self._update_process_mesh_for_specials()

        self._update_process_mesh_between_graphs()

        self._update_dims_mapping_for_special()

        self._update_dims_mapping_between_graphs()

        # Copy the corresponding distributed attribute from graph to serial_main_program
        self._dist_context.copy_dist_attr_from_graph_to_program()

        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

1118
    def _complete_high_order_grad_annotation(self, serial_main_program=None):
1119
        """
1120
        NOTE:
1121 1122 1123 1124
            [HighOrderGrad] Complete the annotation of vars and ops only for high order gradient.
            This function is temporary to support high order gradient, and will be removed in the future.
        """

1125 1126 1127 1128 1129
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

1130 1131 1132 1133 1134 1135 1136
        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_op_by_id(ops, id):
            for op in ops:
1137
                if op.desc.original_id() == id:
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
                    return op
            return None

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
        grad_var_to_var = dist_op_context.grad_var_to_var

        appended_grad_times = 0
        for idx in range(0, len(ops)):
            op = ops[idx]
            if int(op.attr('op_role')) == int(
1150 1151
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1152 1153 1154
                continue

            if int(op.attr('op_role')) == int(
1155 1156 1157 1158
                core.op_proto_and_checker_maker.OpRole.Backward
            ) and int(ops[idx - 1].attr('op_role')) == int(
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1159 1160
                appended_grad_times += 1

1161
            if int(op.attr('op_role')) == int(
1162 1163 1164
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1165 1166 1167
                assert op.type == "fill_constant"
                break

1168 1169 1170
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1171 1172 1173 1174
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1175
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1176
                forward_op = _get_op_by_id(
1177 1178 1179 1180 1181
                    ops,
                    dist_op_context.grad_op_id_to_op_id[
                        grad_op.desc.original_id()
                    ],
                )
1182 1183
                assert forward_op is not None

1184 1185 1186
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1187 1188 1189 1190 1191
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh

                for input_name in grad_op.input_arg_names:
1192 1193 1194 1195
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1196 1197
                        if input_name in grad_var_to_var[appended_grad_times]:
                            fwd_name = grad_var_to_var[appended_grad_times][
1198 1199 1200 1201 1202 1203 1204
                                input_name
                            ]
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1205 1206 1207
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1208 1209
                                input_var
                            ).dims_mapping
1210
                    else:
1211
                        if input_name in forward_op.input_arg_names:
1212 1213 1214 1215 1216
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1217
                        else:
1218 1219 1220 1221 1222 1223 1224 1225
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1226
                    grad_op_dist_attr.set_input_dims_mapping(
1227 1228
                        input_name, ref_dims_mapping
                    )
1229 1230 1231 1232 1233

                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var[appended_grad_times]
                    fwd_name = grad_var_to_var[appended_grad_times][output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1234 1235
                        fwd_name
                    )
1236 1237 1238 1239 1240 1241
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1242 1243
                        output_var, tensor_dist_attr
                    )
1244
                    # op
1245
                    grad_op_dist_attr.set_output_dims_mapping(
1246 1247
                        output_name, ref_dims_mapping
                    )
1248 1249

                self._dist_context.set_op_dist_attr_for_program(
1250 1251
                    grad_op, grad_op_dist_attr
                )
1252 1253 1254 1255 1256 1257 1258

            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
            else:

                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1259 1260 1261 1262 1263
                    assert (
                        output_name in grad_var_to_var[appended_grad_times]
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1264
                    ref_fwd_var_name = grad_var_to_var[appended_grad_times][
1265 1266
                        output_name
                    ]
1267
                    ref_fwd_var = vars[ref_fwd_var_name]
1268 1269 1270 1271 1272
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1273 1274 1275 1276 1277 1278 1279 1280
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1281 1282
                        output_var, tensor_dist_attr
                    )
1283 1284 1285 1286 1287
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1288 1289
                            var_name, ref_fwd_dims_mapping
                        )
1290
                    grad_op_dist_attr.set_output_dims_mapping(
1291 1292
                        output_name, ref_fwd_dims_mapping
                    )
1293

1294
                elif grad_op.type == 'fill_any_like':
1295 1296
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1297 1298 1299 1300 1301
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1302 1303 1304 1305 1306 1307 1308 1309 1310
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1311 1312
                        output_var, tensor_dist_attr
                    )
1313 1314 1315
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1316
                    grad_op_dist_attr.set_input_dims_mapping(
1317 1318
                        ref_var_name, ref_dims_mapping
                    )
1319
                    grad_op_dist_attr.set_output_dims_mapping(
1320 1321
                        output_var_name, ref_dims_mapping
                    )
1322 1323 1324 1325 1326

                elif grad_op.type in ['shape', 'fill_constant']:
                    continue

                else:
1327 1328 1329
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1330 1331

                self._dist_context.set_op_dist_attr_for_program(
1332 1333
                    grad_op, grad_op_dist_attr
                )
1334

1335
    def complete_backward_annotation(self, serial_main_program=None):
1336
        """Complete the annotation of vars and ops in the backward phase for parallel program."""
1337

1338 1339 1340
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
1341
            self._dist_context._serial_main_program = serial_main_program
1342 1343 1344 1345 1346 1347 1348 1349

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_forward_varname_from_grad_varname(grad_var_name):
            assert _is_grad_var_name(
1350 1351 1352
                grad_var_name
            ), "[{}] is not a grad varnme.".format(grad_var_name)
            return grad_var_name[: grad_var_name.find("@GRAD")]
1353 1354 1355

        def _get_op_by_id(ops, id):
            for op in ops:
1356
                if op.desc.original_id() == id:
1357 1358 1359 1360 1361 1362
                    return op
            return None

        first_backward_op_idx = -1
        for idx, op in enumerate(serial_main_program.global_block().ops):
            if int(op.attr('op_role')) == int(
1363 1364 1365
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1366 1367 1368 1369
                assert op.type == "fill_constant"
                first_backward_op_idx = idx
                break

1370 1371 1372
        assert (
            first_backward_op_idx >= 0
        ), "No backward procedure found in this program."
1373 1374 1375 1376

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
1377 1378 1379
        grad_var_to_var = dist_op_context.grad_var_to_var[
            len(dist_op_context.grad_var_to_var)
        ]
1380 1381 1382 1383 1384 1385

        for idx in range(first_backward_op_idx, len(ops)):

            # complete the initial grad loss op
            if idx == first_backward_op_idx:
                assert ops[idx].type == "fill_constant"
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
                assert (
                    len(ops[idx].input_arg_names) == 0
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].input_arg_names)
                )
                assert (
                    len(ops[idx].output_arg_names) == 1
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].output_arg_names)
                )
1396 1397 1398

                grad_var = vars[ops[idx].output_arg_names[0]]
                forward_var_name = _get_forward_varname_from_grad_varname(
1399 1400
                    grad_var.name
                )
1401 1402 1403 1404
                forward_var = vars[forward_var_name]

                # TODO complete other attribte for grad var
                tensor_dist_attr = TensorDistributedAttribute()
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
                process_mesh = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).process_mesh
                )
                dims_mapping = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).dims_mapping
                )
1415 1416 1417
                tensor_dist_attr.dims_mapping = dims_mapping
                tensor_dist_attr.process_mesh = process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
1418 1419
                    grad_var, tensor_dist_attr
                )
1420

1421 1422
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = process_mesh
1423 1424 1425
                op_dist_attr.set_output_dims_mapping(
                    grad_var.name, dims_mapping
                )
1426
                self._dist_context.set_op_dist_attr_for_program(
1427 1428
                    ops[idx], op_dist_attr
                )
1429
                continue
1430

1431 1432 1433
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1434 1435 1436 1437
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1438
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1439 1440 1441
                forward_op = _get_op_by_id(
                    ops[:first_backward_op_idx],
                    dist_op_context.grad_op_id_to_op_id[
1442 1443 1444
                        grad_op.desc.original_id()
                    ],
                )
1445 1446
                assert forward_op is not None

J
JZ-LIANG 已提交
1447
                if grad_op.type == "concat" and forward_op.type == "split":
1448 1449 1450 1451 1452
                    forward_op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_program(
                            forward_op
                        )
                    )
J
JZ-LIANG 已提交
1453 1454
                    output_var = vars[grad_op.desc.output('Out')[0]]
                    split_input_var_name = forward_op.input("X")[0]
1455 1456 1457 1458 1459
                    ref_dims_mapping = (
                        forward_op_dist_attr.get_input_dims_mapping(
                            split_input_var_name
                        )
                    )
J
JZ-LIANG 已提交
1460 1461 1462 1463 1464
                    ref_mesh = forward_op_dist_attr.process_mesh

                    grad_op_dist_attr = OperatorDistributedAttribute()
                    for input_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1465 1466
                            input_name, ref_dims_mapping
                        )
J
JZ-LIANG 已提交
1467 1468 1469 1470

                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1471
                    self._dist_context.set_tensor_dist_attr_for_program(
1472 1473
                        output_var, output_var_dist_attr
                    )
J
JZ-LIANG 已提交
1474

1475
                    grad_op_dist_attr.set_output_dims_mapping(
1476 1477
                        output_var.name, ref_dims_mapping
                    )
J
JZ-LIANG 已提交
1478
                    grad_op_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1479
                    self._dist_context.set_op_dist_attr_for_program(
1480 1481
                        grad_op, grad_op_dist_attr
                    )
1482 1483 1484 1485 1486 1487
                    grad_op_dist_attr.impl_type = (
                        fwd_op_dist_attr.impl_type  # noqa: F821
                    )
                    grad_op_dist_attr.impl_idx = (
                        fwd_op_dist_attr.impl_idx  # noqa: F821
                    )
1488

J
JZ-LIANG 已提交
1489 1490
                    continue

1491 1492 1493
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1494
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
1495
                grad_op_dist_attr = OperatorDistributedAttribute()
1496
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh
1497 1498

                for input_name in grad_op.input_arg_names:
1499 1500 1501 1502
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1503 1504
                        if input_name in grad_var_to_var:
                            fwd_name = grad_var_to_var[input_name]
1505 1506 1507 1508 1509
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1510 1511 1512
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1513 1514
                                input_var
                            ).dims_mapping
1515
                    else:
1516
                        if input_name in forward_op.input_arg_names:
1517 1518 1519 1520 1521
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1522
                        else:
1523 1524 1525 1526 1527 1528 1529 1530
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1531
                    grad_op_dist_attr.set_input_dims_mapping(
1532 1533
                        input_name, ref_dims_mapping
                    )
1534

1535 1536 1537 1538
                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var
                    fwd_name = grad_var_to_var[output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1539 1540
                        fwd_name
                    )
1541 1542 1543 1544 1545 1546
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1547 1548
                        output_var, tensor_dist_attr
                    )
1549
                    # op
1550
                    grad_op_dist_attr.set_output_dims_mapping(
1551 1552
                        output_name, ref_dims_mapping
                    )
1553

1554 1555
                grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx
1556
                self._dist_context.set_op_dist_attr_for_program(
1557 1558
                    grad_op, grad_op_dist_attr
                )
1559

1560
            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
1561
            else:
1562 1563 1564
                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1565 1566 1567 1568 1569
                    assert (
                        output_name in grad_var_to_var
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1570 1571
                    ref_fwd_var_name = grad_var_to_var[output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
1572 1573 1574 1575 1576
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1577 1578 1579 1580 1581 1582 1583 1584 1585
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh

                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1586 1587
                        output_var, tensor_dist_attr
                    )
1588

1589 1590 1591 1592 1593
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1594 1595
                            var_name, ref_fwd_dims_mapping
                        )
1596
                    grad_op_dist_attr.set_output_dims_mapping(
1597 1598
                        output_name, ref_fwd_dims_mapping
                    )
1599 1600
                    grad_op_dist_attr.impl_type = "default"
                    grad_op_dist_attr.impl_idx = 0
1601

1602
                elif grad_op.type == 'fill_any_like':
1603 1604
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1605 1606 1607 1608 1609
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1610 1611 1612 1613 1614 1615 1616 1617 1618
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1619 1620
                        output_var, tensor_dist_attr
                    )
1621 1622 1623
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1624
                    grad_op_dist_attr.set_input_dims_mapping(
1625 1626
                        ref_var_name, ref_dims_mapping
                    )
1627
                    grad_op_dist_attr.set_output_dims_mapping(
1628 1629
                        output_var_name, ref_dims_mapping
                    )
1630 1631

                else:
1632 1633 1634
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1635 1636

                self._dist_context.set_op_dist_attr_for_program(
1637 1638
                    grad_op, grad_op_dist_attr
                )
1639

1640
    def complete_update_annotation(self, serial_main_program):
1641
        """Complete the annotation of vars and ops in the update phase for parallel program."""
1642 1643
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1644 1645 1646 1647
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1648
        world_ranks = get_world_process_group().ranks
1649 1650

        # Notice: serial_main_program is actually a dist_main_program of current rank,
1651
        # and must be passed into this function.
1652 1653
        # TODO: We should fix this behavior.

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        learning_rate_completed = False

        for idx in range(len(ops)):

            # complete the annotation of the optimizer op.
            # TODO to add attribute for moment var
            op = ops[idx]
            if int(op.attr('op_role')) == int(OpRole.Optimize):
1664
                if is_gradient_clip_op(op):
1665
                    if op.type in [
1666 1667 1668 1669 1670
                        "sum",
                        "sqrt",
                        "fill_constant",
                        "elementwise_max",
                        "elementwise_div",
1671
                    ]:
1672
                        # complete op dist_attr with global world ranks
1673 1674 1675 1676 1677
                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = world_ranks
                        for in_name in op.input_arg_names:
                            in_var = vars[in_name]
                            in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1678 1679
                                in_var
                            )
1680 1681
                            op_dist_attr.set_input_dims_mapping(
                                in_name, in_dist_attr.dims_mapping
1682
                            )
1683 1684 1685 1686 1687 1688 1689 1690
                        for out_name in op.output_arg_names:
                            out_var = vars[out_name]
                            out_dist_attr = TensorDistributedAttribute()
                            out_dist_attr.process_mesh = world_ranks
                            out_dist_attr.dims_mapping = [
                                -1 for _ in range(len(out_var.shape))
                            ]
                            self._dist_context.set_tensor_dist_attr_for_program(
1691 1692
                                out_var, out_dist_attr
                            )
1693 1694
                            op_dist_attr.set_output_dims_mapping(
                                out_name, out_dist_attr.dims_mapping
1695
                            )
1696
                    else:
1697
                        # get ref_process_mesh and ref_dims_mapping from input_var
1698
                        in_var = vars[op.input("X")[0]]
1699 1700 1701 1702 1703
                        in_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_program(
                                in_var
                            )
                        )
1704 1705 1706 1707
                        assert in_dist_attr is not None
                        ref_process_mesh = in_dist_attr.process_mesh
                        ref_dims_mapping = in_dist_attr.dims_mapping

1708 1709 1710 1711
                        if (
                            op.type == "cast"
                            and ops[idx + 1].type == "elementwise_mul"
                        ):
1712 1713
                            ref_var = vars[ops[idx + 1].input("X")[0]]
                            ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1714 1715
                                ref_var
                            )
1716 1717 1718
                            assert ref_dist_attr is not None
                            ref_process_mesh = ref_dist_attr.process_mesh

1719
                        # complete out_var's tensor_dist_attr
1720 1721 1722 1723 1724 1725
                        out_var = vars[op.output("Out")[0]]
                        out_dist_attr = TensorDistributedAttribute()
                        out_dist_attr.process_mesh = ref_process_mesh
                        if out_var.shape == in_var.shape:
                            out_dist_attr.dims_mapping = ref_dims_mapping
                        else:
1726 1727 1728 1729
                            assert (
                                len(out_var.shape) == 1
                                and out_var.shape[0] == 1
                            )
1730 1731
                            out_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1732 1733
                            out_var, out_dist_attr
                        )
1734

1735 1736
                        # complete op'd dist_attr
                        # complete op process_mesh with input_var's process_mesh
1737 1738
                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = ref_process_mesh
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
                        for in_name in op.input_arg_names:
                            in_var = vars[in_name]
                            in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                                in_var
                            )
                            op_dist_attr.set_input_dims_mapping(
                                in_name, in_dist_attr.dims_mapping
                            )
                        for out_name in op.output_arg_names:
                            out_var = vars[out_name]
                            out_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                                out_var
                            )
                            op_dist_attr.set_output_dims_mapping(
                                out_name, out_dist_attr.dims_mapping
                            )
Z
zhaoyingli 已提交
1755 1756

                    self._dist_context.set_op_dist_attr_for_program(
1757 1758
                        op, op_dist_attr
                    )
1759 1760

                if "Grad" in op.input_names and "Param" in ops[idx].input_names:
1761 1762 1763 1764 1765 1766
                    assert (
                        len(op.input("Param")) == 1
                    ), "Only support one-to-one now."
                    assert (
                        len(op.input("Grad")) == 1
                    ), "Only support one-to-one now."
1767 1768 1769
                    param = vars[op.input("Param")[0]]
                    grad_var = vars[op.input("Grad")[0]]

1770 1771 1772 1773 1774
                    param_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        )
                    )
1775
                    assert param_dist_attr is not None
1776 1777 1778 1779 1780
                    ref_process_mesh = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).process_mesh
                    )
1781
                    assert ref_process_mesh is not None
1782 1783 1784 1785 1786
                    ref_dims_mapping = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).dims_mapping
                    )
1787 1788 1789
                    assert ref_dims_mapping is not None
                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
1790 1791 1792 1793 1794 1795
                    op_dist_attr.set_input_dims_mapping(
                        grad_var.name, ref_dims_mapping
                    )
                    op_dist_attr.set_input_dims_mapping(
                        param.name, ref_dims_mapping
                    )
1796
                    op_dist_attr.set_output_dims_mapping(
1797 1798
                        param.name, ref_dims_mapping
                    )
1799 1800
                    learning_var = vars[op.input("LearningRate")[0]]
                    op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
1801
                    op_dist_attr.set_output_dims_mapping(
1802 1803
                        learning_var.name, [-1]
                    )
1804 1805 1806 1807

                    if not learning_rate_completed:
                        learning_rate_completed = True
                        var_dist_attr = TensorDistributedAttribute()
1808
                        var_dist_attr.process_mesh = world_ranks
1809 1810
                        var_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1811 1812
                            learning_var, var_dist_attr
                        )
1813 1814 1815 1816

                    for input_name in op.desc.input_names():

                        if input_name in [
1817 1818 1819 1820 1821 1822 1823
                            'Param',
                            'Grad',
                            'LearningRate',
                            "SkipUpdate",
                            "Beta1Tensor",
                            "Beta2Tensor",
                            "EpsilonTensor",
1824 1825
                        ]:
                            continue
1826 1827
                        if len(op.desc.input(input_name)) == 0:
                            continue
1828 1829 1830 1831 1832 1833 1834

                        assert len(op.desc.input(input_name)) == 1
                        input_var = vars[op.desc.input(input_name)[0]]
                        input_var_attr = TensorDistributedAttribute()

                        if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
                            input_var_attr.dims_mapping = [-1]
1835
                            op_dist_attr.set_input_dims_mapping(
1836 1837
                                input_var.name, [-1]
                            )
1838
                            op_dist_attr.set_output_dims_mapping(
1839 1840
                                input_var.name, [-1]
                            )
1841 1842 1843
                        else:
                            input_var_attr.dims_mapping = ref_dims_mapping
                            op_dist_attr.set_input_dims_mapping(
1844 1845
                                input_var.name, ref_dims_mapping
                            )
1846
                            op_dist_attr.set_output_dims_mapping(
1847 1848
                                input_var.name, ref_dims_mapping
                            )
1849 1850 1851

                        input_var_attr.process_mesh = ref_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
1852 1853
                            input_var, input_var_attr
                        )
1854 1855

                    self._dist_context.set_op_dist_attr_for_program(
1856 1857
                        op, op_dist_attr
                    )
1858
                    continue
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

    def complete_prim_annotation(self, serial_main_program=None):
        """
        fill default data parallel annotation for program with primitive operators.

        Arguments:
            serial_main_program: partial annotated serial_main_program.
        Returns:
            serial_main_program: completed annotated serial_main_program.
        """
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
Z
zhaoyingli 已提交
1872
            self._dist_context._serial_main_program = serial_main_program
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

        self._dist_context._is_initialized = True
        self._dist_context._init_dist_attr_for_program()
        self._init_global_mesh_for_program()
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()

    def _init_global_mesh_for_program(self):
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1884 1885 1886 1887
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1888 1889 1890 1891 1892 1893
        world_ranks = get_world_process_group().ranks

        for block in self._dist_context._serial_main_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
1894 1895
                    tensor
                )
1896 1897 1898 1899 1900 1901 1902 1903 1904
                assert dist_tensor is not None
                dist_tensor.dist_attr.process_mesh = world_ranks
            for op in block.ops:
                # Copy the distributed operators in the default context
                dist_op = self._dist_context.get_dist_op_for_program(op)
                assert dist_op is not None
                dist_op.dist_attr.process_mesh = world_ranks

                # Find the most compatible implemenetations from the distributed operator
1905
                op_dist_impls = find_compatible_distributed_operator_impls(
1906 1907
                    dist_op, fwd=True
                )
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
                if op_dist_impls is not None:
                    backup_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
                    for op_dist_impl in op_dist_impls:
                        dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                        if op_dist_impl.is_auto_compatible(dist_op):
                            if op_dist_impl.type == "elementwise":
                                dist_op.dist_attr.impl_type = "default"
                            else:
                                dist_op.dist_attr.impl_type = op_dist_impl.type
                            # op_dist_attr.impl_type = op_dist_impl.type
                            dist_op.dist_attr.impl_idx = op_dist_impl.idx
                            break
                        else:
                            dist_op.dist_attr = backup_op_dist_attr