math.cu 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/kernels/cuda/math.h"

17
#include "paddle/pten/kernels/functions/cuda/elementwise/elementwise.h"
18 19 20
#include "paddle/pten/kernels/functions/eigen/mean.h"
#include "paddle/pten/kernels/functions/eigen/scale.h"
#include "paddle/pten/kernels/functions/eigen/sign.h"
21
#include "paddle/pten/kernels/functions/general/elementwise_functor.h"
22 23 24 25 26 27 28 29 30

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

31
#include "paddle/fluid/platform/complex.h"
32 33
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
34
#include "paddle/pten/api/lib/utils/tensor_utils.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/kernel_registry.h"

namespace pten {

/**
 * Util Functors
 */

template <typename T>
struct DivideFunctor {
  HOSTDEVICE explicit inline DivideFunctor(int n)
      : n_inv(static_cast<T>(1.0 / n)) {}

  HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; }

 private:
  T n_inv;
};

/**
 * Kernels
 */

template <typename T>
void Sign(const CUDAContext& dev_ctx, const DenseTensor& x, DenseTensor* out) {
  eigen::Sign<CUDAContext, T>(dev_ctx, x, out);
}

template <typename T>
void Mean(const CUDAContext& dev_ctx, const DenseTensor& x, DenseTensor* out) {
  auto size_prob = x.numel();
  const T* x_data = x.data<T>();
  T* out_data = out->mutable_data<T>();
  auto stream = dev_ctx.stream();

  DivideFunctor<T> transformer(size_prob);
  cub::TransformInputIterator<T, DivideFunctor<T>, const T*> trans_x(
      x_data, transformer);
  size_t temp_storage_bytes = 0;

  auto err = cub::DeviceReduce::Sum(
      nullptr, temp_storage_bytes, trans_x, out_data, size_prob, stream);
  PADDLE_ENFORCE_CUDA_SUCCESS(err);

  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      dev_ctx.GetPlace());
  pten::DenseTensor tmp(
      alloc,
84
      DenseTensorMeta(x.dtype(),
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                      paddle::framework::make_ddim(
                          {static_cast<int64_t>(temp_storage_bytes)}),
                      x.layout()));
  void* temp_storage = tmp.mutable_data<T>();
  err = cub::DeviceReduce::Sum(static_cast<uint8_t*>(temp_storage),
                               temp_storage_bytes,
                               trans_x,
                               out_data,
                               size_prob,
                               stream);
  PADDLE_ENFORCE_CUDA_SUCCESS(err);
}

template <typename T>
void Scale(const CUDAContext& dev_ctx,
           const DenseTensor& x,
           float scale,
           float bias,
           bool bias_after_scale,
           DenseTensor* out) {
  eigen::Scale<CUDAContext, T>(dev_ctx, x, scale, bias, bias_after_scale, out);
}

template <typename T>
void ScaleHost(const CUDAContext& dev_ctx,
               const DenseTensor& x,
               const DenseTensor& scale,
               float bias,
               bool bias_after_scale,
               DenseTensor* out) {
  PADDLE_ENFORCE_EQ(paddle::platform::is_gpu_place(scale.place()),
                    false,
                    paddle::platform::errors::InvalidArgument(
                        "Scale argument isn't a host tensor."));
  eigen::Scale<CUDAContext, T>(dev_ctx,
                               x,
                               static_cast<float>(*scale.data<T>()),
                               bias,
                               bias_after_scale,
                               out);
}

127 128 129 130 131 132 133 134 135 136
template <typename T>
void ElementwiseAdd(const CUDAContext& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    int axis,
                    DenseTensor* out) {
  std::vector<const DenseTensor*> inputs;
  std::vector<DenseTensor*> outputs;
  inputs.emplace_back(&x);
  inputs.emplace_back(&y);
137 138
  // allocate memory for out
  out->mutable_data<T>();
139 140 141 142 143
  outputs.emplace_back(out);
  LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
      dev_ctx, inputs, &outputs, axis, general::AddFunctor<T>());
}

144 145 146 147 148 149 150 151 152 153
template <typename T>
void ElementwiseSub(const CUDAContext& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    int axis,
                    DenseTensor* out) {
  std::vector<const DenseTensor*> inputs;
  std::vector<DenseTensor*> outputs;
  inputs.emplace_back(&x);
  inputs.emplace_back(&y);
154 155
  // allocate memory for out
  out->mutable_data<T>();
156 157 158 159 160
  outputs.emplace_back(out);
  LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
      dev_ctx, inputs, &outputs, axis, general::SubFunctor<T>());
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
template <typename T>
void ElementwiseDiv(const CUDAContext& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    int axis,
                    DenseTensor* out) {
  std::vector<const DenseTensor*> inputs;
  std::vector<DenseTensor*> outputs;
  inputs.emplace_back(&x);
  inputs.emplace_back(&y);
  // allocate memory for out
  out->mutable_data<T>();
  outputs.emplace_back(out);
  LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
      dev_ctx, inputs, &outputs, axis, general::DivFunctor<T>());
}

178 179 180 181 182 183
}  // namespace pten

// TODO(chenweihang): replace by better impl
PT_REGISTER_MODULE(MathCUDA);

using float16 = paddle::platform::float16;
184 185 186
using complex64 = ::paddle::platform::complex<float>;
using complex128 = ::paddle::platform::complex<double>;

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
PT_REGISTER_KERNEL("sign", CUDA, ANY, pten::Sign, float, double, float16) {}
PT_REGISTER_KERNEL("mean", CUDA, ANY, pten::Mean, float, double, float16) {}
PT_REGISTER_KERNEL("scale",
                   CUDA,
                   ANY,
                   pten::Scale,
                   float,
                   double,
                   float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
PT_REGISTER_KERNEL("scale.host",
                   CUDA,
                   ANY,
                   pten::ScaleHost,
                   float,
                   double,
                   float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(1).SetBackend(pten::Backend::CPU);
}
215 216 217 218 219 220 221 222 223 224 225
PT_REGISTER_KERNEL("elementwise_add",
                   CUDA,
                   ANY,
                   pten::ElementwiseAdd,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
226 227 228 229 230 231 232 233 234 235 236
PT_REGISTER_KERNEL("elementwise_sub",
                   CUDA,
                   ANY,
                   pten::ElementwiseSub,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
237 238 239 240 241 242 243 244 245 246 247
PT_REGISTER_KERNEL("elementwise_div",
                   CUDA,
                   ANY,
                   pten::ElementwiseDiv,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}