concat_kernel.cc 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/concat_kernel.h"

#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/concat_funcs.h"

namespace phi {
using memory = dnnl::memory;

namespace funcs {

template <typename T>
class ConcatOneDNNHandler : public OneDNNHandlerNoCachingT<T, dnnl::concat> {
 public:
  ConcatOneDNNHandler(Place cpu_place,
                      int concat_axis,
                      const dnnl::engine onednn_engine,
                      const std::vector<const DenseTensor*>& inputs,
                      DenseTensor* output)
      : OneDNNHandlerNoCachingT<T, dnnl::concat>(onednn_engine, cpu_place) {
    const int rank = inputs[0]->dims().size();

    PADDLE_ENFORCE_EQ(
        concat_axis >= -rank && concat_axis < rank,
        true,
        errors::InvalidArgument(
            "The axis is expected to be in range of [%d, %d), but got %d",
            -rank,
            rank,
            concat_axis));

    if (concat_axis < 0) {
      concat_axis = concat_axis + rank;
    }

    memory::data_type dt = ToOneDNNDataType(inputs[0]->dtype());
    std::vector<memory::desc> srcs_md;
    srcs_md.reserve(inputs.size());

    // Create memory descriptors for each of inputs
    for (size_t i = 0; i < inputs.size(); ++i) {
      srcs_md.push_back(inputs[i]->mem_desc());
    }

    auto dst_dims = vectorize<int64_t>(output->dims());

    memory::desc dst_md = memory::desc(dst_dims, dt, OneDNNMemoryFormat::any);

    this->AcquireForwardPrimitiveDescriptor(dst_md, concat_axis, srcs_md);
  }

  // (jczaja) concat oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
      const memory::desc& dst_md,
      const int concat_axis,
      const std::vector<memory::desc>& srcs_md) {
    this->fwd_pd_.reset(new dnnl::concat::primitive_desc(
        dst_md, concat_axis, srcs_md, this->engine_));
  }

  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const DenseTensor& input,
                                                 int i) {
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
                                            to_void_cast<T>(input_data));
  }
};
}  // namespace funcs

static void EnforceLayouts(const std::vector<const DenseTensor*> inputs) {
  for (auto* input : inputs) {
    PADDLE_ENFORCE_EQ(
        input->layout(),
        DataLayout::ONEDNN,
        errors::InvalidArgument("Wrong layout set for Input tensor"));
  }
}

// From a multi-input, gather only nonempty inputs
static const std::vector<const DenseTensor*> ReduceMultiInput(
    const std::vector<const DenseTensor*>& inputs) {
  std::vector<const DenseTensor*> reduced(inputs.size());
  auto end_it = std::copy_if(
      inputs.begin(), inputs.end(), reduced.begin(), [](const DenseTensor* t) {
        return t->numel() > 0;
      });
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

template <typename T, typename Context>
void ConcatKernel(const Context& dev_ctx,
                  const std::vector<const DenseTensor*>& x,
                  const Scalar& axis,
                  DenseTensor* out) {
  const auto& onednn_engine = dev_ctx.GetEngine();
  // If any of the multiple inputs of concat has an input size of 0, the
  // actual size of the multi_input will change
  auto multi_input = ReduceMultiInput(x);
  EnforceLayouts(multi_input);

  auto out_dims_vec = vectorize(out->dims());
  if (std::any_of(out_dims_vec.begin(), out_dims_vec.end(), [](int64_t i) {
        return i < 0;
      })) {
    std::vector<phi::DDim> x_dims;
    x_dims.reserve(x.size());
    for (size_t i = 0; i < x.size(); ++i) {
      x_dims.push_back(x[i]->dims());
    }

    DDim out_dims =
        funcs::ComputeAndCheckShape(true, x_dims, axis.to<size_t>());
    out->Resize(out_dims);
  }

  funcs::ConcatOneDNNHandler<T> handler(
      dev_ctx.GetPlace(), axis.to<int>(), onednn_engine, multi_input, out);

  std::vector<std::shared_ptr<memory>> srcs;
  srcs.reserve(multi_input.size());

  auto dst_mem = handler.AcquireDstMemory(out);
  auto concat_p = handler.AcquireForwardPrimitive();

  auto& astream = OneDNNContext::tls().get_stream();
  std::unordered_map<int, memory> args;
  for (size_t i = 0; i < multi_input.size(); ++i) {
    srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i));
    args.insert({DNNL_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
  }
  args.insert({DNNL_ARG_DST, *dst_mem});

  concat_p->execute(astream, args);
  astream.wait();

  out->set_mem_desc(dst_mem->get_desc());
}

}  // namespace phi

PD_REGISTER_KERNEL(concat,
                   OneDNN,
159
                   ONEDNN,
160 161 162 163 164
                   phi::ConcatKernel,
                   float,
                   phi::dtype::bfloat16,
                   int8_t,
                   uint8_t) {}