elementwise_mul_op.h 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
17
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
29 30 31 32 33 34 35
  if (x->numel() >= y->numel()) {
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MulFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseMulFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseMulFunctor<T>(), z);
  }
36
}
37

38 39 40 41 42 43
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseMul {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
};
44

Q
QI JUN 已提交
45
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
46
class ElementwiseMulKernel : public framework::OpKernel<T> {
47 48
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
49 50 51 52
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
                   "Cannot get input Variable X, variable name = %s",
                   ctx.op().Input("X"));
C
chengduo 已提交
53
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    framework::Tensor x, *z;
    if (x_var->IsType<framework::SelectedRows>()) {
      PADDLE_ENFORCE(y->dims().size() == 1 && y->dims()[0] == 1,
                     "For elementwise_op, if X is Sparse, Y must be scalar.");
      auto& x_sele = x_var->Get<framework::SelectedRows>();
      auto out_sele = ctx.Output<framework::SelectedRows>("Out");
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
      z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    } else if (x_var->IsType<framework::LoDTensor>()) {
      x = x_var->Get<framework::LoDTensor>();
      z = ctx.Output<framework::LoDTensor>("Out");
    } else {
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
S
sneaxiy 已提交
72
                   framework::ToTypeName(x_var->Type()));
C
chengduo 已提交
73
    }
C
chengduoZH 已提交
74 75

    z->mutable_data<T>(ctx.GetPlace());
C
chengduo 已提交
76
    if (x.numel() == y->numel()) {
77 78
      SameDimsElemwiseMul<DeviceContext, T> same_dims_mul;
      same_dims_mul(ctx, &x, y, z);
79
    } else {
C
chengduo 已提交
80
      default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
81
    }
G
gongweibao 已提交
82 83
  }
};
84

G
gongweibao 已提交
85
template <typename T>
C
chengduoZH 已提交
86
struct MulGradDX {
C
chengduoZH 已提交
87
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
88 89
};

G
gongweibao 已提交
90
template <typename T>
C
chengduoZH 已提交
91
struct MulGradDY {
C
chengduoZH 已提交
92
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
93
};
C
chengduoZH 已提交
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
120
template <typename DeviceContext, typename T>
121
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
122 123
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
124
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
125 126 127 128 129
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
130
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
131 132 133
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
134 135 136 137 138 139 140
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_mul_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(),
          MulGradDY<T>());
    }
G
gongweibao 已提交
141 142
  }
};
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

166 167
    // dx = dout * ddy
    // dy = dout * ddx
168
    // ddout = ddx * y + x * ddy
169 170 171 172 173 174 175
    // change computation sequence to save memory, so ddout can inplace ddx and
    // dx can be used as 'tmp' tensor
    // (1) dx = x * ddy
    // (2) dy = dout * ddx
    // (3) ddout = ddx * y
    // (4) ddout = ddout + dx
    // (5) dx = dout *ddy
176
    if (ddout) {
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
      // use dx to save memory, other than alloc tmp tensor
      Tensor* ddout_tmp = dx;

      default_elementwise_mul<DeviceContext, T>(ctx, x, &ddy_safe, ddout_tmp);
      int axis = ctx.Attr<int>("axis");
      // NOTE: in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy,
          MulGradDX<T>(), MulGradDY<T>());
      default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, y, ddout);

      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
      auto ddout_tmp_t = framework::EigenVector<T>::Flatten(*ddout_tmp);
      ddout_t.device(place) = ddout_t + ddout_tmp_t;
      default_elementwise_mul<DeviceContext, T>(ctx, dout, &ddy_safe, dx);
198 199 200 201
    }
  }
};

202 203
DECLARE_INPLACE_OP_INFERER(ElementwiseMulDoubleGradOpInplace, {"DDX", "DDOut"});

204 205
}  // namespace operators
}  // namespace paddle