image.py 6.3 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
import numpy as np
try:
    import cv2
except ImportError:
    cv2 = None

from cv2 import resize

__all__ = [
    "load_image", "resize_short", "to_chw", "center_crop", "random_crop",
    "left_right_flip", "simple_transform", "load_and_transform"
]
"""
D
dangqingqing 已提交
14
This file contains some common interfaces for image preprocess.
D
dangqingqing 已提交
15
Many users are confused about the image layout. We introduce
D
dangqingqing 已提交
16
the image layout as follows.
D
dangqingqing 已提交
17 18 19

- CHW Layout
  - The abbreviations: C=channel, H=Height, W=Width
D
dangqingqing 已提交
20 21 22
  - The default layout of image opened by cv2 or PIL is HWC.
    PaddlePaddle only supports the CHW layout. And CHW is simply
    a transpose of HWC. It must transpose the input image.
D
dangqingqing 已提交
23 24 25

- Color format: RGB or BGR
  OpenCV use BGR color format. PIL use RGB color format. Both
D
dangqingqing 已提交
26 27
  formats can be used for training. Noted that, the format should
  be keep consistent between the training and inference peroid.
D
dangqingqing 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
"""


def load_image(file, is_color=True):
    """
    Load an color or gray image from the file path.

    Example usage:
    
    .. code-block:: python
        im = load_image('cat.jpg')

    :param file: the input image path.
    :type file: string
    :param is_color: If set is_color True, it will load and
                     return a color image. Otherwise, it will
                     load and return a gray image.
    """
D
dangqingqing 已提交
46 47 48 49 50 51 52
    # cv2.IMAGE_COLOR for OpenCV3
    # cv2.CV_LOAD_IMAGE_COLOR for older OpenCV Version
    # cv2.IMAGE_GRAYSCALE for OpenCV3
    # cv2.CV_LOAD_IMAGE_GRAYSCALE for older OpenCV Version
    # Here, use constant 1 and 0
    # 1: COLOR, 0: GRAYSCALE
    flag = 1 if is_color else 0
D
dangqingqing 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    im = cv2.imread(file, flag)
    return im


def resize_short(im, size):
    """ 
    Resize an image so that the length of shorter edge is size.

    Example usage:
    
    .. code-block:: python
        im = load_image('cat.jpg')
        im = resize_short(im, 256)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param size: the shorter edge size of image after resizing.
    :type size: int
    """
    assert im.shape[-1] == 1 or im.shape[-1] == 3
    h, w = im.shape[:2]
    h_new, w_new = size, size
    if h > w:
        h_new = size * h / w
    else:
        w_new = size * w / h
    im = resize(im, (h_new, w_new), interpolation=cv2.INTER_CUBIC)
    return im


def to_chw(im, order=(2, 0, 1)):
    """
    Transpose the input image order. The image layout is HWC format
D
dangqingqing 已提交
86 87
    opened by cv2 or PIL. Transpose the input image to CHW layout
    according the order (2,0,1).
D
dangqingqing 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    Example usage:
    
    .. code-block:: python
        im = load_image('cat.jpg')
        im = resize_short(im, 256)
        im = to_chw(im)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param order: the transposed order.
    :type order: tuple|list 
    """
    assert len(im.shape) == len(order)
    im = im.transpose(order)
    return im


def center_crop(im, size, is_color=True):
    """
    Crop the center of image with size.

    Example usage:
    
    .. code-block:: python
        im = center_crop(im, 224)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
D
dangqingqing 已提交
117
    :param size: the cropping size.
D
dangqingqing 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    :type size: int
    :param is_color: whether the image is color or not.
    :type is_color: bool
    """
    h, w = im.shape[:2]
    h_start = (h - size) / 2
    w_start = (w - size) / 2
    h_end, w_end = h_start + size, w_start + size
    if is_color:
        im = im[h_start:h_end, w_start:w_end, :]
    else:
        im = im[h_start:h_end, w_start:w_end]
    return im


def random_crop(im, size, is_color=True):
    """
    Randomly crop input image with size.

    Example usage:
    
    .. code-block:: python
        im = random_crop(im, 224)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
D
dangqingqing 已提交
144
    :param size: the cropping size.
D
dangqingqing 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    :type size: int
    :param is_color: whether the image is color or not.
    :type is_color: bool
    """
    h, w = im.shape[:2]
    h_start = np.random.randint(0, h - size + 1)
    w_start = np.random.randint(0, w - size + 1)
    h_end, w_end = h_start + size, w_start + size
    if is_color:
        im = im[h_start:h_end, w_start:w_end, :]
    else:
        im = im[h_start:h_end, w_start:w_end]
    return im


def left_right_flip(im):
    """
    Flip an image along the horizontal direction.
    Return the flipped image.

    Example usage:
    
    .. code-block:: python
        im = left_right_flip(im)
    
    :paam im: input image with HWC layout
    :type im: ndarray
    """
    if len(im.shape) == 3:
        return im[:, ::-1, :]
    else:
        return im[:, ::-1, :]


def simple_transform(im, resize_size, crop_size, is_train, is_color=True):
    """
D
dangqingqing 已提交
181
    Simply data argumentation for training. These operations include
D
dangqingqing 已提交
182 183
    resizing, croping and flipping.

D
dangqingqing 已提交
184 185 186 187 188
    Example usage:
    
    .. code-block:: python
        im = simple_transform(im, 256, 224, True)

D
dangqingqing 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    :param im: The input image with HWC layout.
    :type im: ndarray
    :param resize_size: The shorter edge length of the resized image.
    :type resize_size: int
    :param crop_size: The cropping size.
    :type crop_size: int
    :param is_train: Whether it is training or not.
    :type is_train: bool
    """
    im = resize_short(im, resize_size)
    if is_train:
        im = random_crop(im, crop_size)
        if np.random.randint(2) == 0:
            im = left_right_flip(im)
    else:
        im = center_crop(im, crop_size)
    im = to_chw(im)

    return im


def load_and_transform(filename,
                       resize_size,
                       crop_size,
                       is_train,
                       is_color=True):
    """
    Load image from the input file `filename` and transform image for
D
dangqingqing 已提交
217 218
    data argumentation. Please refer to the `simple_transform` interface
    for the transform operations.
D
dangqingqing 已提交
219

D
dangqingqing 已提交
220 221 222 223 224
    Example usage:
    
    .. code-block:: python
        im = load_and_transform('cat.jpg', 256, 224, True)

D
dangqingqing 已提交
225 226 227 228 229 230 231 232 233 234 235 236
    :param filename: The file name of input image.
    :type filename: string
    :param resize_size: The shorter edge length of the resized image.
    :type resize_size: int
    :param crop_size: The cropping size.
    :type crop_size: int
    :param is_train: Whether it is training or not.
    :type is_train: bool
    """
    im = load_image(filename)
    im = simple_transform(im, resize_size, crop_size, is_train, is_color)
    return im