test_communicator_geo.py 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17 18
import os
import sys
19
import time
20
import threading
21 22
import subprocess
import unittest
23
import numpy
24

25
import paddle
26 27
import paddle.fluid as fluid

28
import paddle.distributed.fleet.base.role_maker as role_maker
29
import paddle.distributed.fleet as fleet
30

P
pangyoki 已提交
31 32
paddle.enable_static()

33

34
class TestCommunicatorGeoEnd2End(unittest.TestCase):
35 36
    def net(self):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
37 38 39 40 41 42 43 44 45 46 47 48 49
        x1 = fluid.layers.data(name='x1', shape=[1], dtype='int64', lod_level=1)

        emb = fluid.layers.embedding(
            input=x1,
            size=[10000, 10],
            param_attr=fluid.ParamAttr(
                name="embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)

        pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
        z = fluid.layers.concat(input=[x, pool], axis=1)
        y_predict = fluid.layers.fc(input=z, size=1, act=None)
50 51 52 53
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')

        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
54
        return avg_cost, x, x1, y
55

56 57 58 59
    def fake_reader(self):
        def reader():
            for i in range(10000):
                x = numpy.random.random((1, 13)).astype('float32')
60
                z = numpy.random.randint(0, 9999, (1, 1)).astype('int64')
61
                y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
62
                yield x, z, y
63

64
        return reader
65

66 67
    def run_pserver(self, role, strategy):
        fleet.init(role)
68
        avg_cost, x, z, y = self.net()
69
        optimizer = fluid.optimizer.SGD(0.01)
70 71
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)
72

73 74 75 76 77 78 79 80
        fleet.init_server()
        fleet.run_server()

    def run_trainer(self, role, strategy):
        place = fluid.core.CPUPlace()
        exe = fluid.Executor(place)

        fleet.init(role)
81
        avg_cost, x, z, y = self.net()
82
        optimizer = fluid.optimizer.SGD(0.01)
83 84 85
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

86
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
87
        fleet.init_worker()
88 89

        train_reader = paddle.batch(self.fake_reader(), batch_size=24)
90
        feeder = fluid.DataFeeder(place=place, feed_list=[x, z, y])
91 92

        for batch_id, data in enumerate(train_reader()):
93 94 95
            exe.run(fluid.default_main_program(),
                    feed=feeder.feed(data),
                    fetch_list=[])
96

97
        fleet.stop_worker()
98

99 100 101
    def run_ut(self):
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")

102 103 104 105 106 107 108 109
        os.environ["PADDLE_PSERVER_NUMS"] = "1"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
            "127.0.0.1:36001"
110

111 112
        role = role_maker.PaddleCloudRoleMaker()

113
        strategy = paddle.distributed.fleet.DistributedStrategy()
114 115
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": 100}
C
Chengmo 已提交
116
        strategy.a_sync_configs = {"launch_barrier": False}
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

        if training_role == "TRAINER":
            self.run_trainer(role, strategy)
        else:
            self.run_pserver(role, strategy)

    def test_communicator(self):
        run_server_cmd = """
from __future__ import print_function

import sys
import os

import time
import threading
import subprocess
import unittest
import numpy

import paddle
import paddle.fluid as fluid

from paddle.fluid.communicator import Communicator
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
142
import paddle.distributed.fleet as fleet
143 144 145

from test_communicator_geo import TestCommunicatorGeoEnd2End

P
pangyoki 已提交
146
paddle.enable_static()
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

class RunServer(TestCommunicatorGeoEnd2End):
    def runTest(self):
        pass

os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["http_proxy"] = ""
os.environ["https_proxy"] = ""

half_run_server = RunServer()
half_run_server.run_ut()
"""

        server_file = "run_server_for_communicator_geo.py"
        with open(server_file, "w") as wb:
            wb.write(run_server_cmd)
        os.environ["TRAINING_ROLE"] = "PSERVER"
        os.environ["http_proxy"] = ""
        os.environ["https_proxy"] = ""

        _python = sys.executable

        ps_cmd = "{} {}".format(_python, server_file)
        ps_proc = subprocess.Popen(
            ps_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE)

        time.sleep(5)
176

177 178 179
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["http_proxy"] = ""
        os.environ["https_proxy"] = ""
180

181 182
        self.run_ut()
        ps_proc.kill()
183

184 185
        if os.path.exists(server_file):
            os.remove(server_file)
186

187 188 189

if __name__ == '__main__':
    unittest.main()