“b8a169119bbf8bffcd06fcf68e5634defbe217f8”上不存在“paddle/phi/tests/api/test_sparse_conv_api.cc”
test_sparse_conv_api.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See
the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
16

17 18 19 20 21 22 23 24 25
#include <memory>

#include "paddle/phi/api/include/api.h"
#include "paddle/phi/api/include/sparse_api.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"

26 27
PD_DECLARE_KERNEL(sparse_conv3d, CPU, ALL_LAYOUT);

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
template <typename T>
void TestConv3dBase(const std::vector<int>& indices,
                    const std::vector<T>& features,
                    const phi::DDim& x_dims,
                    const std::vector<T>& kernel,
                    const phi::DDim& kernel_dims,
                    const std::vector<int>& correct_out_indices,
                    const std::vector<T>& correct_out_features,
                    const phi::DDim& correct_out_dims,
                    const int non_zero_num,
                    const std::vector<int>& paddings,
                    const std::vector<int>& strides,
                    const std::vector<int>& dilations,
                    const float diff = 1e-3) {
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

  phi::DenseTensor indices_tensor(
      alloc.get(),
      phi::DenseTensorMeta(
          phi::DataType::INT32, {4, non_zero_num}, phi::DataLayout::NCHW));
  memcpy(
      indices_tensor.data<int>(), indices.data(), indices.size() * sizeof(int));

  phi::DenseTensor features_tensor(
      alloc.get(),
      phi::DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
                           {non_zero_num, in_channels},
                           phi::DataLayout::NHWC));
  memcpy(
      features_tensor.data<T>(), features.data(), features.size() * sizeof(T));

  auto x_tensor = std::make_shared<phi::SparseCooTensor>(
      indices_tensor, features_tensor, x_dims);
  paddle::experimental::Tensor x(x_tensor);

  auto kernel_tensor = std::make_shared<phi::DenseTensor>(
      alloc.get(),
      phi::DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
                           kernel_dims,
                           phi::DataLayout::NHWC));
  paddle::experimental::Tensor weight(kernel_tensor);

  memcpy(kernel_tensor->mutable_data<T>(paddle::platform::CPUPlace()),
         kernel.data(),
         kernel.size() * sizeof(T));

  if (!std::is_same<T, phi::dtype::float16>::value) {
79
    auto tensor_out = paddle::experimental::sparse::conv3d(
Z
zhangkaihuo 已提交
80
        x, weight, paddings, dilations, strides, 1, false);
81

82 83
    auto out =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(tensor_out.impl());
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    ASSERT_EQ(correct_out_dims.size(), out->dims().size());
    for (int i = 0; i < correct_out_dims.size(); i++) {
      ASSERT_EQ(correct_out_dims[i], out->dims()[i]);
    }
    ASSERT_EQ((int64_t)correct_out_features.size() / out_channels, out->nnz());

    int cmp_indices = memcmp(correct_out_indices.data(),
                             out->non_zero_indices().data<int>(),
                             correct_out_indices.size() * sizeof(int));
    ASSERT_EQ(cmp_indices, 0);

    for (uint64_t i = 0; i < correct_out_features.size(); i++) {
      float tmp = std::fabs(static_cast<float>(
          correct_out_features[i] - out->non_zero_elements().data<T>()[i]));
      ASSERT_LT(tmp, diff);
    }
  }
}

void TestConv3d(const std::vector<int>& indices,
                const std::vector<float>& features,
                const phi::DDim& x_dims,
                const std::vector<float>& kernel,
                const phi::DDim& kernel_dims,
                const std::vector<int>& correct_out_indices,
                const std::vector<float>& correct_out_features,
                const phi::DDim& correct_out_dims,
                const int non_zero_num,
                const std::vector<int>& paddings,
                const std::vector<int>& strides,
                const std::vector<int>& dilations) {
  // test float
  TestConv3dBase<float>(indices,
                        features,
                        x_dims,
                        kernel,
                        kernel_dims,
                        correct_out_indices,
                        correct_out_features,
                        correct_out_dims,
                        non_zero_num,
                        paddings,
                        strides,
                        dilations);
}

TEST(API, sparse_conv2d) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  const int in_channels = 1;
  const int out_channels = 1;
  phi::DDim x_dims = {1, 1, 5, 5, in_channels};
  phi::DDim kernel_dims = {1, 3, 3, in_channels, out_channels};
  phi::DDim out_dims = {1, 1, 3, 3, out_channels};
  std::vector<int> paddings = {0, 0, 0};
  std::vector<int> strides = {1, 1, 1};
  std::vector<int> dilations = {1, 1, 1};

  const int non_zero_num = 3;
  std::vector<int> indices_flatten = {0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 2, 4};

  std::vector<float> features = {-0.79394531, -0.3125, -0.55029297};
  // 3*3*3=27
  std::vector<float> kernel = {0.65820312,
                               0.75048828,
                               0.21411133,
                               0.17370605,
                               0.85546875,
                               0.53076172,
                               0.28833008,
                               0.71044922,
                               0.00659943};

  std::vector<int> out_indices_flatten = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                          0, 0, 2, 2, 2, 1, 2, 0, 1, 2};

  std::vector<float> out_features = {
      -0.17004, -0.71338, -0.00206, -0.22205, -0.09009};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations);
}