test_adagrad_op.py 5.4 KB
Newer Older
1 2
import unittest
import numpy as np
Q
QI JUN 已提交
3 4
import paddle.v2.fluid.core as core
from paddle.v2.fluid.op import Operator
5
from op_test import OpTest
Q
QI JUN 已提交
6
import math
7 8


K
Kexin Zhao 已提交
9 10 11 12
class TestAdagradOp1(OpTest):
    ''' Test Adagrad operator with explicit attributes
    '''

13 14 15 16 17 18
    def setUp(self):
        self.op_type = "adagrad"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")
K
Kexin Zhao 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
        lr = 0.01
        epsilon = 1e-8

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
            'LearningRate': np.array([lr]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon}

        moment_out = moment + grad * grad
        param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)

        self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}

    def test_check_output(self):
        self.check_output()


class TestAdagradOp2(OpTest):
    ''' Test Adagrad operator with default attributes
    '''
43

K
Kexin Zhao 已提交
44 45 46 47 48 49 50
    def setUp(self):
        self.op_type = "adagrad"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")
        lr = 0.01
51 52
        epsilon = 1e-6

K
Kexin Zhao 已提交
53 54 55 56 57 58
        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
            'LearningRate': np.array([lr]).astype("float32")
        }
59

K
Kexin Zhao 已提交
60
        self.attrs = {'epsilon': epsilon}
61 62

        moment_out = moment + grad * grad
63
        param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
64

K
Kexin Zhao 已提交
65
        self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
66 67 68 69 70

    def test_check_output(self):
        self.check_output()


Q
QI JUN 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class TestSparseAdagradOp(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

        # create and initialize Grad Variable   
        height = 10
        rows = [0, 4, 7, 4]
        row_numel = 12

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and initialize moment Variable
        moment = scope.var('Moment').get_tensor()
        moment_np_array = np.full((height, row_numel), 2.0).astype("float32")
        moment.set(moment_np_array, place)

        # create and run sgd operator
        adagrad_op = Operator(
            "adagrad",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            Moment='Moment',
            MomentOut='Moment',
            LearningRate='LearningRate',
            epsilon=2.0)

D
dzhwinter 已提交
116
        adagrad_op.run(scope, place)
Q
QI JUN 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

        # get and compare moment result
        moment_result_array = np.array(moment)

        self.assertAlmostEqual(6.0, moment_result_array[rows[0], 0])
        self.assertAlmostEqual(3.0, moment_result_array[rows[0], 2])
        self.assertAlmostEqual(2.0, moment_result_array[1, 0])
        # 2.0 + (1.0 + 1.0)^2
        self.assertAlmostEqual(6.0, moment_result_array[rows[1], 10])
        self.assertAlmostEqual(6.0, moment_result_array[rows[3], 4])

        self.assertAlmostEqual(2.0, moment_result_array[5, 8])
        self.assertAlmostEqual(3.0, moment_result_array[rows[2], 1])
        self.assertAlmostEqual(18.0, moment_result_array[rows[2], 8])

        # get and compare param result
        result_array = np.array(param)

        def get_out(param, lr, grad, m, epsilon):
            return param - lr * grad / (math.sqrt(m) + epsilon)

        self.assertAlmostEqual(
            get_out(5.0, 2.0, 2.0, 6.0, 2.0),
            result_array[rows[0], 0],
            places=5)
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 1.0, 3.0, 2.0),
            result_array[rows[0], 2],
            places=5)
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[1, 0], places=5)

        # grad_merge = 1.0 + 1.0
        # m = 6.0
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 2.0, 6.0, 2.0),
            result_array[rows[1], 10],
            places=5)

        self.assertAlmostEqual(
            get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[5, 8], places=5)
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 1.0, 3.0, 2.0),
            result_array[rows[2], 1],
            places=5)
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 4.0, 18.0, 2.0),
            result_array[rows[2], 8],
            places=5)

    def test_sparse_adagrad(self):
        places = [core.CPUPlace()]
        if core.is_compile_gpu():
D
dzhwinter 已提交
170
            places.append(core.CUDAPlace(0))
Q
QI JUN 已提交
171 172 173 174
        for place in places:
            self.check_with_place(place)


175 176
if __name__ == "__main__":
    unittest.main()