Matrix.cpp 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "PaddleAPI.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include "paddle/math/CpuSparseMatrix.h"
#include <iostream>
#include <cstring>

struct MatrixPrivate {
  std::shared_ptr<paddle::Matrix> mat;
};

Matrix::Matrix() : m(new MatrixPrivate()) {}

Matrix* Matrix::createByPaddleMatrixPtr(void* sharedPtr) {
  auto* mat = reinterpret_cast<paddle::MatrixPtr*>(sharedPtr);
  if ((*mat) != nullptr) {
    auto m = new Matrix();
    m->m->mat = *mat;
    return m;
  } else {
    return nullptr;
  }
}

Matrix* Matrix::createZero(size_t height, size_t width, bool useGpu) {
  auto m = new Matrix();
  m->m->mat = paddle::Matrix::create(height, width, useGpu);
  m->m->mat->zero();
  return m;
}

46 47 48 49
Matrix* Matrix::createDense(const std::vector<float>& data,
                            size_t height,
                            size_t width,
                            bool useGpu) {
Z
zhangjinchao01 已提交
50 51 52 53 54 55
  auto m = new Matrix();
  m->m->mat = paddle::Matrix::create(height, width, useGpu);
  m->m->mat->copyFrom(data.data(), data.size());
  return m;
}

56 57 58 59 60
Matrix* Matrix::createDenseFromNumpy(float* data,
                                     int dim1,
                                     int dim2,
                                     bool copy,
                                     bool useGpu) throw(UnsupportError) {
61 62
  if (useGpu) {
    /// Gpu mode only supports copy=True
63
    if (!copy) {
64
      throw UnsupportError("Gpu mode only supports copy=True");
65
    }
66 67 68 69 70 71
    return Matrix::createGpuDenseFromNumpy(data, dim1, dim2);
  } else {
    return Matrix::createCpuDenseFromNumpy(data, dim1, dim2, copy);
  }
}

72 73 74
Matrix* Matrix::createCpuDenseFromNumpy(float* data,
                                        int dim1,
                                        int dim2,
Z
zhangjinchao01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
                                        bool copy) {
  auto m = new Matrix();
  if (copy) {
    m->m->mat = paddle::Matrix::create(dim1, dim2);
    m->m->mat->copyFrom(data, dim1 * dim2);
  } else {
    m->m->mat = paddle::Matrix::create(data, dim1, dim2, false);
  }
  return m;
}

Matrix* Matrix::createGpuDenseFromNumpy(float* data, int dim1, int dim2) {
  auto m = new Matrix();
  m->m->mat = paddle::Matrix::create(dim1, dim2, false, true);
  m->m->mat->copyFrom(data, dim1 * dim2);
  return m;
}

93 94 95 96 97 98
Matrix* Matrix::createSparse(size_t height,
                             size_t width,
                             size_t nnz,
                             bool isNonVal,
                             bool isTrans,
                             bool useGpu) {
Z
zhangjinchao01 已提交
99 100
  auto m = new Matrix();
  m->m->mat = paddle::Matrix::createSparseMatrix(
101 102 103 104 105 106
      height,
      width,
      nnz,
      isNonVal ? paddle::NO_VALUE : paddle::FLOAT_VALUE,
      isTrans,
      useGpu);
Z
zhangjinchao01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  return m;
}

Matrix::~Matrix() { delete m; }

size_t Matrix::getHeight() const { return m->mat->getHeight(); }

size_t Matrix::getWidth() const { return m->mat->getWidth(); }

float Matrix::get(size_t x, size_t y) const throw(RangeError) {
  if (x > this->getWidth() || y > this->getHeight()) {
    RangeError e;
    throw e;
  }
  return m->mat->getElement(x, y);
}

void Matrix::set(size_t x, size_t y, float val) throw(RangeError,
                                                      UnsupportError) {
  if (x > this->getWidth() || y > this->getHeight()) {
    RangeError e;
    throw e;
  }
  auto rawMat = m->mat.get();
  if (auto cDenseMat = dynamic_cast<paddle::CpuMatrix*>(rawMat)) {
    *(cDenseMat->getData() + x + y * cDenseMat->getWidth()) = val;
  } else {
    UnsupportError e;
    throw e;
  }
}

bool Matrix::isSparse() const {
  auto raw_mat = m->mat.get();
  return dynamic_cast<paddle::CpuSparseMatrix*>(raw_mat) != nullptr ||
         dynamic_cast<paddle::GpuSparseMatrix*>(raw_mat) != nullptr;
}

SparseValueType Matrix::getSparseValueType() const throw(UnsupportError) {
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr) {
    return (SparseValueType)cpuSparseMat->getValueType();
  } else {
    auto gpuSparseMat =
        std::dynamic_pointer_cast<paddle::GpuSparseMatrix>(m->mat);
    if (gpuSparseMat != nullptr) {
      return (SparseValueType)gpuSparseMat->getValueType();
    } else {
      UnsupportError e;
      throw e;
    }
  }
}

SparseFormatType Matrix::getSparseFormat() const throw(UnsupportError) {
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr) {
    return (SparseFormatType)cpuSparseMat->getFormat();
  } else {
    auto gpuSparseMat =
        std::dynamic_pointer_cast<paddle::GpuSparseMatrix>(m->mat);
    if (gpuSparseMat != nullptr) {
      return SPARSE_CSR;
    } else {
      UnsupportError e;
      throw e;
    }
  }
}

IntArray Matrix::getSparseRowCols(size_t i) const
    throw(UnsupportError, RangeError) {
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr &&
      cpuSparseMat->getFormat() == paddle::SPARSE_CSR) {
    if (i < cpuSparseMat->getHeight()) {
      // cpuSparseMat->print(std::cout);
      size_t len = cpuSparseMat->getColNum(i);
      return IntArray(cpuSparseMat->getRowCols(i), len);
    } else {
      RangeError e;
      throw e;
    }
  } else {
    UnsupportError e;
    throw e;
  }
}

IntWithFloatArray Matrix::getSparseRowColsVal(size_t i) const
    throw(UnsupportError, RangeError) {
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr &&
      cpuSparseMat->getValueType() == paddle::FLOAT_VALUE) {
    if (i < cpuSparseMat->getHeight()) {
      return IntWithFloatArray(cpuSparseMat->getRowValues(i),
                               cpuSparseMat->getRowCols(i),
                               cpuSparseMat->getColNum(i));
    } else {
      RangeError e;
      throw e;
    }
  } else {
    UnsupportError e;
    throw e;
  }
}

FloatArray Matrix::getData() const {
  auto rawMat = m->mat.get();
  if (dynamic_cast<paddle::GpuMemoryHandle*>(rawMat->getMemoryHandle().get())) {
    // is gpu. then copy data
    float* data = rawMat->getData();
    size_t len = rawMat->getElementCnt();
    float* cpuData = new float[len];
    hl_memcpy_device2host(cpuData, data, len * sizeof(float));
    FloatArray ret_val(cpuData, len);
    ret_val.needFree = true;
    return ret_val;
  } else {
    FloatArray ret_val(rawMat->getData(), rawMat->getElementCnt());
    return ret_val;
  }
}

void Matrix::sparseCopyFrom(
237 238
    const std::vector<int>& rows,
    const std::vector<int>& cols,
Z
zhangjinchao01 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    const std::vector<float>& vals) throw(UnsupportError) {
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr) {
    // LOG(INFO) <<"RowSize = "<<rows.size()
    //  <<" ColSize = "<<cols.size()
    //  <<" ValSize = "<<vals.size();
    cpuSparseMat->copyFrom(const_cast<std::vector<int>&>(rows),
                           const_cast<std::vector<int>&>(cols),
                           const_cast<std::vector<float>&>(vals));
  } else {
    UnsupportError e;
    throw e;
  }
}

void* Matrix::getSharedPtr() const { return &m->mat; }

257 258
void Matrix::toNumpyMatInplace(float** view_data,
                               int* dim1,
Z
zhangjinchao01 已提交
259 260 261 262 263 264 265 266 267 268
                               int* dim2) throw(UnsupportError) {
  auto cpuMat = std::dynamic_pointer_cast<paddle::CpuMatrix>(m->mat);
  if (cpuMat) {
    *dim1 = cpuMat->getHeight();
    *dim2 = cpuMat->getWidth();
    *view_data = cpuMat->getData();
  } else {
    throw UnsupportError();
  }
}
269 270
void Matrix::copyToNumpyMat(float** view_m_data,
                            int* dim1,
Z
zhangjinchao01 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                            int* dim2) throw(UnsupportError) {
  static_assert(sizeof(paddle::real) == sizeof(float),
                "Currently PaddleAPI only support for single "
                "precision version of paddle.");
  if (this->isSparse()) {
    throw UnsupportError();
  } else {
    *dim1 = m->mat->getHeight();
    *dim2 = m->mat->getWidth();
    *view_m_data = new float[(*dim1) * (*dim2)];
    if (auto cpuMat = dynamic_cast<paddle::CpuMatrix*>(m->mat.get())) {
      auto src = cpuMat->getData();
      auto dest = *view_m_data;
      std::memcpy(dest, src, sizeof(paddle::real) * (*dim1) * (*dim2));
    } else if (auto gpuMat = dynamic_cast<paddle::GpuMatrix*>(m->mat.get())) {
      auto src = gpuMat->getData();
      auto dest = *view_m_data;
288 289
      hl_memcpy_device2host(
          dest, src, sizeof(paddle::real) * (*dim1) * (*dim2));
Z
zhangjinchao01 已提交
290 291 292 293 294 295 296
    } else {
      LOG(WARNING) << "Unexpected Situation";
      throw UnsupportError();
    }
  }
}

297 298
void Matrix::copyFromNumpyMat(float* data,
                              int dim1,
Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
                              int dim2) throw(UnsupportError, RangeError) {
  if (isSparse()) {
    throw UnsupportError();
  } else {
    if (this->getHeight() == (size_t)dim1 && this->getWidth() == (size_t)dim2) {
      if (m->mat->getData() != data) {
        m->mat->copyFrom(data, dim1 * dim2);
      }
    } else {
      throw RangeError();
    }
  }
}

bool Matrix::isGpu() const {
  auto rawPtr = m->mat.get();
  return dynamic_cast<paddle::GpuMatrix*>(rawPtr) != nullptr ||
         dynamic_cast<paddle::GpuSparseMatrix*>(rawPtr) != nullptr;
}