lod_reset_op.cc 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lod_reset_op.h"
S
sneaxiy 已提交
16
#include <memory>
17
#include <string>
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class LoDResetOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
27 28
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LoDReset");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "LoDReset");
29 30

    if (!ctx->HasInput("Y")) {
31
      auto level0 = ctx->Attrs().Get<std::vector<int>>("target_lod");
32 33 34
      PADDLE_ENFORCE_GT(
          static_cast<int64_t>(level0.size()), 0,
          platform::errors::InvalidArgument(
35 36 37
              "If Input(Y) is not provided, the output's LoD should be "
              "specified by attribute 'target_lod'. But the size of "
              "'target_lod' is 0."));
38
    } else if (ctx->IsRuntime()) {
H
Hongyu Liu 已提交
39
      ctx->ShareLoD("Y", "Out");
P
phlrain 已提交
40
    }
41 42 43 44
    auto append = ctx->Attrs().Get<bool>("append");
    if (append) {
      ctx->ShareLoD("X", /*->*/ "Out");
    }
45 46 47 48 49 50 51 52 53 54 55 56 57 58

    if (ctx->HasInput("Y")) {
      if (!ctx->IsRuntime()) {
        ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("Y"), 1));
      }
    } else if (append) {
      if (!ctx->IsRuntime()) {
        ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("X") + 1, 1));
      }
    } else {
      if (!ctx->IsRuntime()) {
        ctx->SetLoDLevel("Out", 1);
      }
    }
59 60 61 62
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
63
  framework::OpKernelType GetExpectedKernelType(
64
      const framework::ExecutionContext &ctx) const override {
65 66 67
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
68
  }
69 70 71 72 73 74 75 76

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
77 78
};

79 80 81 82 83
class LoDResetOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_var_name = ctx->Input("X").front();
    auto out_var_name = ctx->Output("Out").front();
84
    bool append = boost::get<bool>(ctx->GetAttr("append"));
85 86 87 88
    if (ctx->HasInput("Y")) {
      auto y_var_name = ctx->Input("Y").front();
      auto y_lod_level = std::max(ctx->GetLoDLevel(y_var_name), 1);
      ctx->SetLoDLevel(out_var_name, y_lod_level);
89 90 91
    } else if (append) {
      auto x_lod_level = std::max(ctx->GetLoDLevel(x_var_name), 1);
      ctx->SetLoDLevel(out_var_name, x_lod_level);
92 93 94 95 96 97 98 99
    } else {
      ctx->SetLoDLevel(out_var_name, 1);
    }
    ctx->SetDataType(out_var_name, ctx->GetDataType(x_var_name));
    ctx->SetType(out_var_name, paddle::framework::proto::VarType::LOD_TENSOR);
  }
};

100 101
class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
102
  void Make() override {
103 104 105 106 107
    AddInput("X",
             "(Tensor, LoDTensor) Input variable of LoDResetOp which "
             "could be a Tensor or LoDTensor, where the data of output "
             "variable inherits from.");
    AddInput("Y",
Y
yangyaming 已提交
108 109 110 111
             "(Tensor, LoDTensor, optional) If provided and Y is LoDTensor, "
             "lod of Input(Y) would be considered as the target lod first, "
             "otherwise data of Input(Y) would be considered as the "
             "target lod.")
112
        .AsDispensable();
113 114 115
    AddOutput("Out",
              "(LoDTensor) Output variable of LoDResetOp which should be a "
              "LoDTensor.");
116 117 118
    AddAttr<std::vector<int>>("target_lod",
                              "The target level 0 LoD from Attr().")
        .SetDefault(std::vector<int>{});
119
    AddAttr<bool>("append", "Append data to lod vector.").SetDefault(false);
120 121
    AddComment(R"DOC(LoDReset operator

122
Set LoD of `X` to a new one specified by `Y` or attribute `target_lod`. When `Y`
Y
yangyaming 已提交
123 124 125 126 127
provided and `Y` is a LoDTensor, `Y.lod` would be considered as target LoD
first, otherwise `Y.data` would be considered as target LoD. If `Y` is not
provided, target LoD should be specified by attribute `target_lod`.
If target LoD is specified by `Y.data` or `target_lod`, only one level LoD
is supported.
128

Y
yangyaming 已提交
129
Example 1:
130

Y
yangyaming 已提交
131 132
Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
133 134
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]
135

Y
yangyaming 已提交
136
attr(target_lod): [0, 4, 6]
137

Y
yangyaming 已提交
138
then we get a 1-level LoDTensor:
139 140 141
    Out.lod =  [[ 0,                   4,            6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]
142

Y
yangyaming 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
Example 2:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a Tensor:
    Y.data = [[0, 2, 6]]
    Y.dims = [1, 3]

then we get a 1-level LoDTensor:
    Out.lod =  [[ 0,     2,                          6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

Example 3:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,      2,                   5     6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a 2-level LoDTensor:
    Y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
    Y.dims = [6, 1]

then we get a 2-level LoDTensor:
    Out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

176 177 178 179 180 181 182 183 184
)DOC");
  }
};

class LoDResetGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
185 186 187
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LoDResetGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Output",
                   framework::GradVarName("Out"), "LoDResetGrad");
188 189 190 191 192 193

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ x_grad_name);
    }
194 195 196
  }

 protected:
197
  framework::OpKernelType GetExpectedKernelType(
198
      const framework::ExecutionContext &ctx) const override {
199 200 201
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
202 203 204
  }
};

H
hong 已提交
205 206
template <typename T>
class LoDResetGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
207
 public:
H
hong 已提交
208
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
209 210

 protected:
211
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
212
    op->SetType("lod_reset_grad");
H
hong 已提交
213 214 215 216
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
217 218 219
  }
};

220 221
DECLARE_INPLACE_OP_INFERER(LoDResetInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(LoDResetGradInplaceInferer,
222 223 224
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});

225
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LoDResetGradNoNeedBufferVarInference, "X");
S
sneaxiy 已提交
226

227 228 229 230
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
231
REGISTER_OPERATOR(lod_reset, ops::LoDResetOp, ops::LoDResetOpMaker,
H
hong 已提交
232 233
                  ops::LoDResetGradMaker<paddle::framework::OpDesc>,
                  ops::LoDResetGradMaker<paddle::imperative::OpBase>,
234
                  ops::LoDResetOpVarTypeInference, ops::LoDResetInplaceInferer);
S
sneaxiy 已提交
235
REGISTER_OPERATOR(lod_reset_grad, ops::LoDResetGradOp,
236
                  ops::LoDResetGradNoNeedBufferVarInference,
237
                  ops::LoDResetGradInplaceInferer);
238

239 240 241 242 243
REGISTER_OP_CPU_KERNEL(
    lod_reset, ops::LoDResetKernel<paddle::platform::CPUPlace, float>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int64_t>);
244 245
REGISTER_OP_CPU_KERNEL(
    lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::CPUPlace, float>,
246 247 248
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int64_t>);