edit_distance_op.cu 5.4 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Y
Yibing Liu 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Y
Yibing Liu 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Y
Yibing Liu 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include <algorithm>
#include "paddle/framework/op_registry.h"
#include "paddle/platform/cuda_helper.h"
#include "paddle/platform/gpu_info.h"

namespace paddle {
namespace operators {

using platform::PADDLE_CUDA_NUM_THREADS;

template <typename T>
__global__ void FillFirstRow(T* dist, const int N) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  if (idx < N + 1) {
    dist[idx] = idx;
  }
}

template <typename T>
__global__ void FillFirstColumn(T* dist, const int M, const int N) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  if (idx < M + 1) {
    dist[idx * (N + 1)] = idx;
  }
}

template <typename T>
42 43
__global__ void Levenshtein(T* dist, const int64_t* x1, const int64_t* x2,
                            const int M, const int N, const int start) {
44 45 46 47 48 49 50 51 52 53 54 55 56 57
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  int offset = N;
  int index = start + idx * offset;
  int row = index / (N + 1);
  int col = index % (N + 1);
  if (row > 0 && col > 0 && row < M + 1 && col < N + 1) {
    int cost = x1[row - 1] == x2[col - 1] ? 0 : 1;
    int dels = dist[(row - 1) * (N + 1) + col] + 1;
    int ins = dist[row * (N + 1) + col - 1] + 1;
    int subs = dist[(row - 1) * (N + 1) + (col - 1)] + cost;
    dist[index] = min(dels, min(ins, subs));
  }
}

Y
Yibing Liu 已提交
58 59 60 61 62 63 64 65 66
template <typename T>
__global__ void SetOutput(T* out, const T* dist, const int M, const int N,
                          bool normalized) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  if (idx == 0) {
    out[0] = normalized ? dist[M * (N + 1) + N] / N : dist[M * (N + 1) + N];
  }
}

67
template <typename Place, typename T>
68
class EditDistanceGPUKernel : public framework::OpKernel<T> {
69 70 71 72
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* out_t = ctx.Output<framework::Tensor>("Out");

73 74
    auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps");
    auto* x2_t = ctx.Input<framework::LoDTensor>("Refs");
75 76 77 78 79 80

    auto normalized = ctx.Attr<bool>("normalized");
    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto hyp_lod = x1_t->lod()[0];
    auto ref_lod = x2_t->lod()[0];
    PADDLE_ENFORCE(
        hyp_lod.size() == ref_lod.size(),
        "Input(Hyps) and Input(Refs) must have the same batch size.");
    for (size_t i = 1; i < ref_lod.size(); ++i) {
      PADDLE_ENFORCE(ref_lod[i] > ref_lod[i - 1],
                     "Reference string %d is empty.", i);
    }

    auto num_strs = hyp_lod.size() - 1;
    out_t->Resize({static_cast<int64_t>(num_strs), 1});
    out_t->mutable_data<T>(ctx.GetPlace());
    auto out = out_t->data<T>();

96
    T distance = 0.0;
97 98 99 100
    for (size_t num = 0; num < num_strs; num++) {
      auto m = static_cast<int64_t>(hyp_lod[num + 1] - hyp_lod[num]);
      auto n = static_cast<int64_t>(ref_lod[num + 1] - ref_lod[num]);
      if (m == 0 || n == 0) {
101
        distance = std::max(m, n);
102 103 104 105 106
        if (normalized) {
          PADDLE_ENFORCE(n > 0,
                         "The reference string (#%d) cannot be empty "
                         "when Attr(normalized) is enabled.",
                         n);
107
          distance = distance / n;
108 109
        }
        memory::Copy(boost::get<Place>(ctx.GetPlace()), out + num,
110
                     platform::CPUPlace(), &distance, sizeof(T), stream);
111 112 113 114 115
      } else {
        framework::Tensor dist_t;
        dist_t.Resize({m + 1, n + 1});
        dist_t.mutable_data<T>(ctx.GetPlace());
        auto dist = dist_t.data<T>();
116 117
        auto x1 = x1_t->data<int64_t>() + hyp_lod[num];
        auto x2 = x2_t->data<int64_t>() + ref_lod[num];
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

        FillFirstColumn<T><<<1 + m / PADDLE_CUDA_NUM_THREADS,
                             PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, m, n);

        FillFirstRow<T><<<1 + n / PADDLE_CUDA_NUM_THREADS,
                          PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, n);
        // Compute the elements of distance matrix in the anti-diagonal diretion
        for (int64_t slice = 2; slice < m + n + 1; ++slice) {
          int z_m = slice < m + 1 ? 0 : slice - m;
          int z_n = slice < n + 1 ? 0 : slice - n;
          int size = slice - (z_m + z_n) + 1;  // number of elments in the same
                                               // anti-diagonal line to update
          // the start index at which computes from
          int start = slice < n + 1 ? slice : (z_n + 1) * (n + 1) - 1;
          Levenshtein<T><<<1 + (size - 1) / PADDLE_CUDA_NUM_THREADS,
                           PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, x1, x2,
                                                                 m, n, start);
        }
        SetOutput<T><<<1, 1, 0, stream>>>(out + num, dist, m, n, normalized);
137 138 139 140 141 142 143 144 145 146
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

147 148 149
REGISTER_OP_CUDA_KERNEL(
    edit_distance,
    ops::EditDistanceGPUKernel<paddle::platform::CUDAPlace, float>);