scatter.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16

17 18
import paddle
import paddle.distributed as dist
19
from paddle import framework
20 21 22
from paddle.distributed.communication.group import (
    _get_global_group,
    _get_or_throw_group_rank,
23
    _warn_cur_rank_not_in_group,
24
)
25
from paddle.fluid import data_feeder
26 27


28
def _scatter_tensor_in_dygraph(
29
    out_tensor, in_tensor, src_rank_in_group, group, sync_op, use_calc_stream
30
):
31 32 33 34
    nranks = group.nranks

    if use_calc_stream:
        return group.process_group.scatter_tensor_on_calc_stream(
35
            out_tensor, in_tensor, src_rank_in_group
36
        )
37

38
    task = group.process_group.scatter_tensor(
39
        out_tensor, in_tensor, src_rank_in_group, sync_op
40
    )
41 42 43 44 45 46
    if sync_op:
        task.wait()

    return task


47
def _scatter_in_dygraph(
48
    tensor, tensor_list, src_rank_in_group, group, sync_op, use_calc_stream
49
):
50
    nranks = group.nranks
51
    if group.rank == src_rank_in_group:
52 53
        if len(tensor_list) == 0:
            raise RuntimeError(
54 55
                "The tensor_list should not be empty on src rank."
            )
56 57 58 59 60
    else:
        tensor_list = [tensor for _ in range(nranks)]

    if use_calc_stream:
        return group.process_group.scatter_on_calc_stream(
61
            tensor, tensor_list, src_rank_in_group
62
        )
63

64
    task = group.process_group.scatter(
65
        tensor, tensor_list, src_rank_in_group, sync_op
66
    )
67 68 69 70 71 72
    if sync_op:
        task.wait()

    return task


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def _scatter_in_static_mode(
    tensor,
    tensor_or_tensor_list,
    src_rank_in_group,
    group,
    sync_op,
    use_calc_stream,
):
    nranks = dist.get_world_size() if group is None else group.nranks
    rank = dist.get_rank()

    input_tensor = tensor_or_tensor_list
    if isinstance(tensor_or_tensor_list, list):
        tensor_list = tensor_or_tensor_list
        if rank == src_rank_in_group:
            if len(tensor_list) == 0:
                raise RuntimeError(
                    "The tensor_list should not be empty on src rank."
                )
        else:
            tensor_list = [tensor for _ in range(nranks)]
94 95 96 97 98
        # 0D use stack/unstack while others use concat/split
        if len(tensor_list[0].shape) == 0:
            input_tensor = paddle.stack(tensor_list, axis=0)
        else:
            input_tensor = paddle.concat(tensor_list, axis=0)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

    ring_id = 0 if group is None else group.id

    data_feeder.check_variable_and_dtype(
        tensor,
        'tensor',
        [
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'int8',
            'uint8',
            'bool',
        ],
        'scatter',
    )

    op_type = 'c_scatter'
119
    helper = framework.LayerHelper(op_type, **locals())
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    helper.append_op(
        type=op_type,
        inputs={'X': [input_tensor]},
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'root': src_rank_in_group,
            'use_calc_stream': sync_op,
            'nranks': nranks,
        },
    )

    return None


135 136 137 138 139 140 141 142
def scatter(
    tensor,
    tensor_or_tensor_list=None,
    src=0,
    group=None,
    sync_op=True,
    use_calc_stream=False,
):
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    """

    Scatter a tensor (or a tensor list) across devices.

    Args:
        tensor (Tensor): The output tensor on each rank. The result will overwrite this tenor after communication. Support
            float16, float32, float64, int32, int64, int8, uint8 or bool as the input data type.
        tensor_or_tensor_list (Union[Tensor, List[Tensor]]): The input to scatter (default is `None`, must be specified on the source rank).
            If it is a tensor, it should be correctly-sized. If it is a list, it should contain correctly-sized tensors.
        src (int, optional): Rank of the source device. If none is given, use `0` as default.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Warning:
        This API only supports the dygraph mode now.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data1 = paddle.to_tensor([7, 8, 9])
                data2 = paddle.to_tensor([10, 11, 12])
                dist.stream.scatter(data1, src=1)
            else:
                data1 = paddle.to_tensor([1, 2, 3])
                data2 = paddle.to_tensor([4, 5, 6])
                dist.stream.scatter(data1, [data1, data2], src=1)
            out = data1.numpy()
            # [1, 2, 3] (2 GPUs, out for rank 0)
            # [4, 5, 6] (2 GPUs, out for rank 1)
    """
184 185
    if _warn_cur_rank_not_in_group(group):
        return
186 187 188

    if not sync_op and use_calc_stream:
        raise RuntimeError(
189 190
            "use_calc_stream can only be true in sync op behavior."
        )
191

192 193 194 195 196 197 198 199 200 201 202
    # NOTE(liyurui): Only the source rank needs to specific the tensor_or_tensor_list argument.
    # Other ranks which pass this argument in will be ignored with a warning.
    # If a tensor_list passed in, we need to concat it to a tensor before invoke C++ API.
    # If a tensor passed in, concat is not needed.
    # The passed in type for non-src rank is meaningless, for it will be ignored.
    if src != dist.get_rank():
        if tensor_or_tensor_list is not None:
            warnings.warn(
                "Specific `tensor_or_tensor_list` is meaningless for rank which is not src."
            )
        tensor_or_tensor_list = []
203 204

    if framework.in_dygraph_mode():
205 206
        group = _get_global_group() if group is None else group
        src_rank_in_group = _get_or_throw_group_rank(src, group)
207
        if paddle.is_tensor(tensor_or_tensor_list):
208 209 210
            return _scatter_tensor_in_dygraph(
                tensor,
                tensor_or_tensor_list,
211
                src_rank_in_group,
212 213 214 215
                group,
                sync_op,
                use_calc_stream,
            )
216
        else:
217 218 219
            return _scatter_in_dygraph(
                tensor,
                tensor_or_tensor_list,
220
                src_rank_in_group,
221 222 223 224
                group,
                sync_op,
                use_calc_stream,
            )
225
    else:
226 227 228
        assert (
            group is None
        ), "Group can not be used in static graph mode for now."
229 230 231 232 233 234 235 236 237

        return _scatter_in_static_mode(
            tensor,
            tensor_or_tensor_list,
            src,
            group,
            sync_op,
            use_calc_stream,
        )