test_custom_optional.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest

import numpy as np
from utils import extra_cc_args, extra_nvcc_args, paddle_includes

import paddle
22
from paddle import static
23 24 25 26 27
from paddle.utils.cpp_extension import get_build_directory, load
from paddle.utils.cpp_extension.extension_utils import run_cmd

# Because Windows don't use docker, the shared lib already exists in the
# cache dir, it will not be compiled again unless the shared lib is removed.
28
file = f'{get_build_directory()}\\custom_optional\\custom_optional.pyd'
29
if os.name == 'nt' and os.path.isfile(file):
30
    cmd = f'del {file}'
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    run_cmd(cmd, True)

# Compile and load custom op Just-In-Time.
custom_optional = load(
    name='custom_optional',
    sources=['custom_optional.cc'],
    extra_include_paths=paddle_includes,  # add for Coverage CI
    extra_cxx_cflags=extra_cc_args,  # test for cflags
    extra_cuda_cflags=extra_nvcc_args,  # test for cflags
    verbose=True,
)


def optional_dynamic_add(phi_func, device, dtype, np_x, np_y):
    paddle.set_device(device)
    x = paddle.to_tensor(np_x, dtype=dtype, stop_gradient=False)

    if np_y is not None:
        y = paddle.to_tensor(np_y, dtype=dtype, stop_gradient=False)
    else:
        y = x
    if phi_func:
        out = custom_optional.custom_add(x, y if np_y is not None else None)
    else:
        out = paddle.add(x, y)

    out.backward()
    return x.numpy(), out.numpy(), x.grad.numpy()


def optional_static_add(phi_func, device, dtype, np_x, np_y):
    paddle.enable_static()
    paddle.set_device(device)
    with static.scope_guard(static.Scope()):
        with static.program_guard(static.Program()):
            x = static.data(name="x", shape=[None, np_x.shape[1]], dtype=dtype)
            x.stop_gradient = False
            if np_y is not None:
                y = static.data(
                    name="y", shape=[None, np_x.shape[1]], dtype=dtype
                )
                y.stop_gradient = False
                feed_dict = {
                    "x": np_x.astype(dtype),
                    "y": np_y.astype(dtype),
                }
            else:
                y = x
                feed_dict = {
                    "x": np_x.astype(dtype),
                }
            if phi_func:
                out = custom_optional.custom_add(
                    x, y if np_y is not None else None
                )
            else:
                out = paddle.add(x, y)

            mean_out = paddle.mean(out)
            static.append_backward(mean_out)

            exe = static.Executor()
            exe.run(static.default_startup_program())

            x_v, out_v, x_grad_v = exe.run(
                static.default_main_program(),
                feed=feed_dict,
                fetch_list=[
                    x.name,
                    out.name,
                    x.name + "@GRAD",
                ],
            )
    paddle.disable_static()
    return x_v, out_v, x_grad_v


108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
'''
if (y) {
  outX = 2 * x + y;
  outY = x + y;
} else {
  outX = 2 * x;
  outY = None;
}
'''


def optional_inplace_dynamic_add(phi_func, device, dtype, np_x, np_y):
    paddle.set_device(device)
    x = paddle.to_tensor(np_x, dtype=dtype, stop_gradient=False)

    if np_y is not None:
        y = paddle.to_tensor(np_y, dtype=dtype, stop_gradient=True)
        if phi_func:
            outx, outy = custom_optional.custom_optional_inplace_add(x, y)
        else:
            # We need to accumulate y's grad here.
            y.stop_gradient = False
            outx = 2 * x + y
            # Inplace leaf Tensor's stop_gradient should be True
            y.stop_gradient = True
            outy = y.add_(x)
    else:
        y = None
        if phi_func:
            outx, outy = custom_optional.custom_optional_inplace_add(x, y)
        else:
            outx = 2 * x
            outy = None
        assert (
            outy is None
        ), "The output `outy` of optional_inplace_dynamic_add should be None"

    out = outx + outy if outy is not None else outx
    out.backward()
    return (
        x.numpy(),
        outx.numpy(),
        y.numpy() if y is not None else None,
        outy.numpy() if outy is not None else None,
        out.numpy(),
        x.grad.numpy(),
        y.grad.numpy() if y is not None and y.grad is not None else None,
    )


def optional_inplace_static_add(phi_func, device, dtype, np_x, np_y):
    paddle.enable_static()
    paddle.set_device(device)
    with static.scope_guard(static.Scope()):
        with static.program_guard(static.Program()):
            x = static.data(name="x", shape=[None, np_x.shape[1]], dtype=dtype)
            x.stop_gradient = False
            if np_y is not None:
                y = static.data(
                    name="y", shape=[None, np_x.shape[1]], dtype=dtype
                )
                y.stop_gradient = False
                feed_dict = {
                    "x": np_x.astype(dtype),
                    "y": np_y.astype(dtype),
                }
                if phi_func:
                    outx, outy = custom_optional.custom_optional_inplace_add(
                        x, y
                    )
                else:
                    outx = 2 * x + y
                    outy = x + y
            else:
                feed_dict = {
                    "x": np_x.astype(dtype),
                }
                if phi_func:
                    outx, outy = custom_optional.custom_optional_inplace_add(
                        x, None
                    )
                else:
                    outx = 2 * x
                    outy = None
            out = outx + outy if outy is not None else outx
            mean_out = paddle.mean(out)
            static.append_backward(mean_out)

            exe = static.Executor()
            exe.run(static.default_startup_program())

            if np_y is not None:
                x_v, out_v, x_grad_v, y_grad_v = exe.run(
                    static.default_main_program(),
                    feed=feed_dict,
                    fetch_list=[
                        x.name,
                        out.name,
                        x.name + "@GRAD",
                        y.name + "@GRAD",
                    ],
                )
                paddle.disable_static()
                return [x_v, out_v, x_grad_v, y_grad_v]
            else:
                x_v, out_v, x_grad_v = exe.run(
                    static.default_main_program(),
                    feed=feed_dict,
                    fetch_list=[
                        x.name,
                        out.name,
                        x.name + "@GRAD",
                    ],
                )
                paddle.disable_static()
                return [x_v, out_v, x_grad_v]


226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
def optional_vector_dynamic_add(phi_func, device, dtype, np_x, np_inputs):
    paddle.set_device(device)
    x = paddle.to_tensor(np_x, dtype=dtype, stop_gradient=False)

    if np_inputs is not None:
        inputs = [
            paddle.to_tensor(np_input, dtype=dtype, stop_gradient=False)
            for np_input in np_inputs
        ]
        if phi_func:
            out = custom_optional.custom_add_vec(x, inputs)
        else:
            out = paddle.add(x, inputs[0])
            for input in inputs[1:]:
                out = paddle.add(out, input)
    else:
        if phi_func:
            out = custom_optional.custom_add_vec(x, None)
        else:
            out = paddle.add(x, x)

    out.backward()
    return x.numpy(), out.numpy(), x.grad.numpy()


def optional_vector_static_add(phi_func, device, dtype, np_x, np_inputs):
    paddle.enable_static()
    paddle.set_device(device)
    with static.scope_guard(static.Scope()):
        with static.program_guard(static.Program()):
            x = static.data(name="x", shape=[None, np_x.shape[1]], dtype=dtype)
            x.stop_gradient = False
            feed_dict = {"x": np_x.astype(dtype)}
            if np_inputs is not None:
                y1 = static.data(
                    name="y1", shape=[None, np_x.shape[1]], dtype=dtype
                )
                y1.stop_gradient = False
                y2 = static.data(
                    name="y2", shape=[None, np_x.shape[1]], dtype=dtype
                )
                y2.stop_gradient = False
                feed_dict.update(
                    {
                        "y1": np_inputs[0].astype(dtype),
                        "y2": np_inputs[1].astype(dtype),
                    }
                )
                if phi_func:
                    out = custom_optional.custom_add_vec(x, [y1, y2])
                else:
                    out = paddle.add(x, y1)
                    out = paddle.add(out, y2)
            else:
                if phi_func:
                    out = custom_optional.custom_add_vec(x, None)
                else:
                    out = paddle.add(x, x)

            mean_out = paddle.mean(out)
            static.append_backward(mean_out)

            exe = static.Executor()
            exe.run(static.default_startup_program())

            x_v, out_v, x_grad_v = exe.run(
                static.default_main_program(),
                feed=feed_dict,
                fetch_list=[
                    x.name,
                    out.name,
                    x.name + "@GRAD",
                ],
            )
    paddle.disable_static()
    return x_v, out_v, x_grad_v


304 305 306 307 308 309
class TestCustomOptionalJit(unittest.TestCase):
    def setUp(self):
        self.dtypes = ['float32', 'float64']
        self.devices = ['cpu']
        self.np_x = np.random.random((3, 2)).astype("float32")
        self.np_y = np.random.random((3, 2)).astype("float32")
310 311 312 313
        self.np_inputs = [
            np.random.random((3, 2)).astype("float32"),
            np.random.random((3, 2)).astype("float32"),
        ]
314 315

    def check_output(self, out, pd_out, name):
316 317 318 319
        if out is None and pd_out is None:
            return
        assert out is not None, "out value of " + name + " is None"
        assert pd_out is not None, "pd_out value of " + name + " is None"
320 321 322 323 324 325 326 327 328
        np.testing.assert_array_equal(
            out,
            pd_out,
            err_msg='custom op {}: {},\n paddle api {}: {}'.format(
                name, out, name, pd_out
            ),
        )

    def check_output_allclose(self, out, pd_out, name):
329 330 331 332
        if out is None and pd_out is None:
            return
        assert out is not None, "out value of " + name + " is None"
        assert pd_out is not None, "pd_out value of " + name + " is None"
333 334 335 336 337 338 339 340 341 342
        np.testing.assert_allclose(
            out,
            pd_out,
            rtol=5e-5,
            atol=1e-2,
            err_msg='custom op {}: {},\n paddle api {}: {}'.format(
                name, out, name, pd_out
            ),
        )

343
    def test_optional_static_add(self):
344 345
        for device in self.devices:
            for dtype in self.dtypes:
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
                for np_y in [None, self.np_y]:
                    (pd_x, pd_out, pd_x_grad,) = optional_static_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    (phi_x, phi_out, phi_x_grad,) = optional_static_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )

                    self.check_output(phi_x, pd_x, "x")
                    self.check_output(phi_out, pd_out, "out")
                    self.check_output(phi_x_grad, pd_x_grad, "x_grad")
365

366
    def test_optional_dynamic_add(self):
367 368
        for device in self.devices:
            for dtype in self.dtypes:
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
                for np_y in [None, self.np_y]:
                    (pd_x, pd_out, pd_x_grad,) = optional_dynamic_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    (phi_x, phi_out, phi_x_grad,) = optional_dynamic_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
384

385 386 387
                    self.check_output(phi_x, pd_x, "x")
                    self.check_output(phi_out, pd_out, "out")
                    self.check_output(phi_x_grad, pd_x_grad, "x_grad")
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    def test_optional_inplace_static_add(self):
        for device in self.devices:
            for dtype in self.dtypes:
                for np_y in [None, self.np_y]:
                    pd_tuple = optional_inplace_static_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    phi_tuple = optional_inplace_static_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )

                    self.check_output(phi_tuple[0], pd_tuple[0], "x")
                    self.check_output(phi_tuple[1], pd_tuple[1], "out")
                    self.check_output(phi_tuple[2], pd_tuple[2], "x_grad")
                    if len(phi_tuple) > 3:
                        self.check_output(phi_tuple[3], pd_tuple[3], "y_grad")

    def test_optional_inplace_dynamic_add(self):
        for device in self.devices:
            for dtype in self.dtypes:
                for np_y in [None, self.np_y]:
                    (
                        pd_x,
                        pd_outx,
                        pd_y,
                        pd_outy,
                        pd_out,
                        pd_x_grad,
                        pd_y_grad,
                    ) = optional_inplace_dynamic_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    (
                        phi_x,
                        phi_outx,
                        phi_y,
                        phi_outy,
                        phi_out,
                        phi_x_grad,
                        phi_y_grad,
                    ) = optional_inplace_dynamic_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )

                    self.check_output(pd_y, pd_outy, "inplace_pd_y")
                    self.check_output(phi_y, phi_outy, "inplace_phi_y")

                    self.check_output(phi_x, pd_x, "x")
                    self.check_output(phi_outx, pd_outx, "outx")
                    self.check_output(phi_y, pd_y, "y")
                    self.check_output(phi_outy, pd_outy, "outy")
                    self.check_output(phi_out, pd_out, "out")
                    self.check_output(phi_x_grad, pd_x_grad, "x_grad")
                    self.check_output(phi_y_grad, pd_y_grad, "y_grad")

460
    def test_optional_vector_static_add(self):
461 462
        for device in self.devices:
            for dtype in self.dtypes:
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
                for np_y in [None, self.np_inputs]:
                    (phi_x, phi_out, phi_x_grad,) = optional_vector_static_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    (pd_x, pd_out, pd_x_grad,) = optional_vector_static_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
478

479 480 481
                    self.check_output(phi_x, pd_x, "x")
                    self.check_output(phi_out, pd_out, "out")
                    self.check_output(phi_x_grad, pd_x_grad, "x_grad")
482

483
    def test_optional_vector_dynamic_add(self):
484 485
        for device in self.devices:
            for dtype in self.dtypes:
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
                for np_y in [None, self.np_inputs]:
                    (phi_x, phi_out, phi_x_grad,) = optional_vector_dynamic_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    (pd_x, pd_out, pd_x_grad,) = optional_vector_dynamic_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
501

502 503 504
                    self.check_output(phi_x, pd_x, "x")
                    self.check_output(phi_out, pd_out, "out")
                    self.check_output(phi_x_grad, pd_x_grad, "x_grad")
505 506 507 508


if __name__ == "__main__":
    unittest.main()