pad2d_op.cu 18.7 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"

namespace paddle {
namespace operators {

using platform::PADDLE_CUDA_NUM_THREADS;

using framework::Tensor;

template <typename T>
__global__ void Pad2DConstNCHW(const int nthreads, const T* in_data,
                               const int num, const int channels,
                               const int in_height, const int in_width,
                               const int out_height, const int out_width,
                               const int pad_top, const int pad_left, T value,
                               T* out_data) {
35
  CUDA_KERNEL_LOOP(index, nthreads) {
W
whs 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    int nc = index / out_width;
    const int out_w = index % out_width;
    const int out_h = nc % out_height;
    nc /= out_height;
    int in_h = out_h - pad_top;
    int in_w = out_w - pad_left;
    out_data[index] =
        (in_h < 0 || in_w < 0 || in_h >= in_height || in_w >= in_width)
            ? value
            : in_data[(nc * in_height + in_h) * in_width + in_w];
  }
}

template <typename T>
__global__ void Pad2DConstNHWC(const int nthreads, const T* in_data,
                               const int num, const int channels,
                               const int in_height, const int in_width,
                               const int out_height, const int out_width,
                               const int pad_top, const int pad_left, T value,
                               T* out_data) {
56
  CUDA_KERNEL_LOOP(index, nthreads) {
W
whs 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    int n = index / channels;
    const int c = index % channels;
    const int out_w = n % out_width;
    n /= out_width;
    const int out_h = n % out_height;
    n /= out_height;
    const int in_h = out_h - pad_top;
    const int in_w = out_w - pad_left;
    out_data[index] =
        (in_h < 0 || in_w < 0 || in_h >= in_height || in_w >= in_width)
            ? value
            : in_data[((n * in_height + in_h) * in_width + in_w) * channels +
                      c];
  }
}

template <typename T>
__global__ void Pad2DReflectNCHW(const int nthreads, const T* in_data,
                                 const int num, const int channels,
                                 const int in_height, const int in_width,
                                 const int out_height, const int out_width,
                                 const int pad_top, const int pad_left,
                                 T* out_data) {
80
  CUDA_KERNEL_LOOP(index, nthreads) {
W
whs 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    int nc = index / out_width;
    const int out_w = index % out_width;
    const int out_h = nc % out_height;
    nc /= out_height;
    int in_h = out_h - pad_top;
    int in_w = out_w - pad_left;
    in_h = max(in_h, -in_h);                     // reflect by 0
    in_h = min(in_h, 2 * in_height - in_h - 2);  // reflect by in_height
    in_w = max(in_w, -in_w);                     // reflect by 0
    in_w = min(in_w, 2 * in_width - in_w - 2);   // reflect by in_width
    out_data[index] = in_data[(nc * in_height + in_h) * in_width + in_w];
  }
}

template <typename T>
__global__ void Pad2DReflectNHWC(const int nthreads, const T* in_data,
                                 const int num, const int channels,
                                 const int in_height, const int in_width,
                                 const int out_height, const int out_width,
                                 const int pad_top, const int pad_left,
                                 T* out_data) {
102
  CUDA_KERNEL_LOOP(index, nthreads) {
W
whs 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    int n = index / channels;
    const int c = index % channels;
    const int out_w = n % out_width;
    n /= out_width;
    const int out_h = n % out_height;
    n /= out_height;
    int in_h = out_h - pad_top;
    int in_w = out_w - pad_left;
    in_h = max(in_h, -in_h);
    in_h = min(in_h, 2 * in_height - in_h - 2);
    in_w = max(in_w, -in_w);
    in_w = min(in_w, 2 * in_width - in_w - 2);
    out_data[index] =
        in_data[((n * in_height + in_h) * in_width + in_w) * channels + c];
  }
}

template <typename T>
__global__ void Pad2DEdgeNCHW(const int nthreads, const T* in_data,
                              const int num, const int channels,
                              const int in_height, const int in_width,
                              const int out_height, const int out_width,
                              const int pad_top, const int pad_left,
                              T* out_data) {
127
  CUDA_KERNEL_LOOP(index, nthreads) {
W
whs 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    int nc = index / out_width;
    const int out_w = index % out_width;
    const int out_h = nc % out_height;
    nc /= out_height;
    int in_h = min(in_height - 1, max(out_h - pad_top, 0));
    int in_w = min(in_width - 1, max(out_w - pad_left, 0));
    out_data[index] = in_data[(nc * in_height + in_h) * in_width + in_w];
  }
}

template <typename T>
__global__ void Pad2DEdgeNHWC(const int nthreads, const T* in_data,
                              const int num, const int channels,
                              const int in_height, const int in_width,
                              const int out_height, const int out_width,
                              const int pad_top, const int pad_left,
                              T* out_data) {
145
  CUDA_KERNEL_LOOP(index, nthreads) {
W
whs 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    int n = index / channels;
    const int c = index % channels;
    const int out_w = n % out_width;
    n /= out_width;
    const int out_h = n % out_height;
    n /= out_height;
    int in_h = min(in_height - 1, max(out_h - pad_top, 0));
    int in_w = min(in_width - 1, max(out_w - pad_left, 0));
    out_data[index] =
        in_data[((n * in_height + in_h) * in_width + in_w) * channels + c];
  }
}

template <typename T>
__global__ void Pad2DGradConstNCHW(const int in_size, T* d_in_data,
                                   const int num, const int channels,
                                   const int in_height, const int in_width,
                                   const int out_height, const int out_width,
                                   const int pad_top, const int pad_left,
                                   const T* d_out_data) {
166
  CUDA_KERNEL_LOOP(in_index, in_size) {
W
whs 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    int nc = in_index / in_width;
    const int out_w = in_index % in_width + pad_left;
    const int out_h = nc % in_height + pad_top;
    nc /= in_height;
    d_in_data[in_index] =
        d_out_data[(nc * out_height + out_h) * out_width + out_w];
  }
}

template <typename T>
__global__ void Pad2DGradConstNHWC(const int in_size, T* d_in_data,
                                   const int num, const int channels,
                                   const int in_height, const int in_width,
                                   const int out_height, const int out_width,
                                   const int pad_top, const int pad_left,
                                   const T* d_out_data) {
183
  CUDA_KERNEL_LOOP(in_index, in_size) {
W
whs 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    int n = in_index / channels;
    const int c = in_index % channels;
    const int out_w = n % in_width + pad_left;
    n /= in_width;
    const int out_h = n % in_height + pad_top;
    n /= in_height;
    d_in_data[in_index] =
        d_out_data[((n * out_height + out_h) * out_width + out_w) * channels +
                   c];
  }
}

template <typename T>
__global__ void Pad2DGradReflectNCHW(const int out_size, T* d_in_data,
                                     const int num, const int channels,
                                     const int in_height, const int in_width,
                                     const int out_height, const int out_width,
                                     const int pad_top, const int pad_left,
                                     const T* d_out_data) {
203
  CUDA_KERNEL_LOOP(out_index, out_size) {
W
whs 已提交
204 205 206 207 208 209 210 211 212 213
    int nc = out_index / out_width;
    const int out_w = out_index % out_width;
    const int out_h = nc % out_height;
    nc /= out_height;
    int in_h = out_h - pad_top;
    int in_w = out_w - pad_left;
    in_h = max(in_h, -in_h);
    in_w = max(in_w, -in_w);
    in_h = min(in_h, 2 * in_height - in_h - 2);
    in_w = min(in_w, 2 * in_width - in_w - 2);
214 215 216
    platform::CudaAtomicAdd(
        &d_in_data[(nc * in_height + in_h) * in_width + in_w],
        d_out_data[out_index]);
W
whs 已提交
217 218 219 220 221 222 223 224 225 226
  }
}

template <typename T>
__global__ void Pad2DGradReflectNHWC(const int out_size, T* d_in_data,
                                     const int num, const int channels,
                                     const int in_height, const int in_width,
                                     const int out_height, const int out_width,
                                     const int pad_top, const int pad_left,
                                     const T* d_out_data) {
227
  CUDA_KERNEL_LOOP(out_index, out_size) {
W
whs 已提交
228 229 230 231 232 233 234 235 236 237 238 239
    const int c = out_index % channels;
    int n = out_index / channels;
    const int out_w = n % out_width;
    n /= out_width;
    const int out_h = n % out_height;
    n /= out_height;
    int in_h = out_h - pad_top;
    int in_w = out_w - pad_left;
    in_h = max(in_h, -in_h);
    in_w = max(in_w, -in_w);
    in_h = min(in_h, in_height * 2 - in_h - 2);
    in_w = min(in_w, in_width * 2 - in_w - 2);
240
    platform::CudaAtomicAdd(
W
whs 已提交
241 242 243 244 245 246 247 248 249 250 251 252
        &d_in_data[((n * in_height + in_h) * in_width + in_w) * channels + c],
        d_out_data[out_index]);
  }
}

template <typename T>
__global__ void Pad2DGradEdgeNCHW(const int out_size, T* d_in_data,
                                  const int num, const int channels,
                                  const int in_height, const int in_width,
                                  const int out_height, const int out_width,
                                  const int pad_top, const int pad_left,
                                  const T* d_out_data) {
253
  CUDA_KERNEL_LOOP(out_index, out_size) {
W
whs 已提交
254 255 256 257 258 259
    int nc = out_index / out_width;
    const int out_w = out_index % out_width;
    const int out_h = nc % out_height;
    nc /= out_height;
    const int in_h = min(in_height - 1, max(out_h - pad_top, 0));
    const int in_w = min(in_width - 1, max(out_w - pad_left, 0));
260 261 262
    platform::CudaAtomicAdd(
        &d_in_data[(nc * in_height + in_h) * in_width + in_w],
        d_out_data[out_index]);
W
whs 已提交
263 264 265 266 267 268 269 270 271 272
  }
}

template <typename T>
__global__ void Pad2DGradEdgeNHWC(const int out_size, T* d_in_data,
                                  const int num, const int channels,
                                  const int in_height, const int in_width,
                                  const int out_height, const int out_width,
                                  const int pad_top, const int pad_left,
                                  const T* d_out_data) {
273
  CUDA_KERNEL_LOOP(out_index, out_size) {
W
whs 已提交
274 275 276 277 278 279 280 281
    const int c = out_index % channels;
    int n = out_index / channels;
    const int out_w = n % out_width;
    n /= out_width;
    const int out_h = n % out_height;
    n /= out_height;
    const int in_h = min(in_height - 1, max(out_h - pad_top, 0));
    const int in_w = min(in_width - 1, max(out_w - pad_left, 0));
282
    platform::CudaAtomicAdd(
W
whs 已提交
283 284 285 286 287
        &d_in_data[((n * in_height + in_h) * in_width + in_w) * channels + c],
        d_out_data[out_index]);
  }
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
static inline void GetPaddings(int* paddings,
                               const framework::ExecutionContext& context) {
  auto* paddings_t = context.Input<Tensor>("Paddings");
  if (paddings_t) {
    Tensor pads;
    framework::TensorCopySync(*paddings_t, platform::CPUPlace(), &pads);
    auto pads_data = pads.data<int>();
    paddings[0] = pads_data[0];
    paddings[1] = pads_data[1];
    paddings[2] = pads_data[2];
    paddings[3] = pads_data[3];
  } else {
    auto pads = context.Attr<std::vector<int>>("paddings");
    std::copy(pads.begin(), pads.end(), paddings);
  }
}

W
whs 已提交
305 306 307 308
template <typename T>
class Pad2dCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
309 310
    int pads[4];
    GetPaddings(pads, context);
W
whs 已提交
311 312
    auto mode = context.Attr<std::string>("mode");
    auto data_format = context.Attr<std::string>("data_format");
313
    T value = static_cast<T>(context.Attr<float>("pad_value"));
314

W
whs 已提交
315 316 317
    auto* x = context.Input<Tensor>("X");
    auto in_dims = x->dims();
    const T* in_data = x->data<T>();
318 319 320 321 322 323 324 325 326 327 328 329 330 331
    auto* out = context.Output<Tensor>("Out");
    auto out_dims = out->dims();
    if (data_format == "NCHW") {
      out_dims[0] = in_dims[0];
      out_dims[1] = in_dims[1];
      out_dims[2] = in_dims[2] + pads[0] + pads[1];
      out_dims[3] = in_dims[3] + pads[2] + pads[3];
    } else {
      out_dims[0] = in_dims[0];
      out_dims[1] = in_dims[1] + pads[0] + pads[1];
      out_dims[2] = in_dims[2] + pads[2] + pads[3];
      out_dims[3] = in_dims[3];
    }
    T* out_data = out->mutable_data<T>(out_dims, context.GetPlace());
W
whs 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    const int pad_top = pads[0];
    const int pad_left = pads[2];
    const int num = in_dims[0];

    auto stream = context.cuda_device_context().stream();
    int block = PADDLE_CUDA_NUM_THREADS;
    const int out_size = out->numel();
    int grid = (out_size + block - 1) / block;

    if (data_format == "NCHW") {
      const int channels = in_dims[1];
      const int in_height = in_dims[2];
      const int in_width = in_dims[3];
      const int out_height = out_dims[2];
      const int out_width = out_dims[3];
      if (mode == "reflect") {
        Pad2DReflectNCHW<T><<<grid, block, 0, stream>>>(
            out_size, in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, out_data);
      } else if (mode == "edge") {
        Pad2DEdgeNCHW<T><<<grid, block, 0, stream>>>(
            out_size, in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, out_data);
      } else {
        Pad2DConstNCHW<T><<<grid, block, 0, stream>>>(
            out_size, in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, value, out_data);
      }
    } else {
      const int channels = in_dims[3];
      const int in_height = in_dims[1];
      const int in_width = in_dims[2];
      const int out_height = out_dims[1];
      const int out_width = out_dims[2];
      if (mode == "reflect") {
        Pad2DReflectNHWC<T><<<grid, block, 0, stream>>>(
            out_size, in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, out_data);
      } else if (mode == "edge") {
        Pad2DEdgeNHWC<T><<<grid, block, 0, stream>>>(
            out_size, in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, out_data);
      } else {
        Pad2DConstNHWC<T><<<grid, block, 0, stream>>>(
            out_size, in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, value, out_data);
      }
    }
  }
};

template <typename T>
class Pad2dGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
387 388
    int pads[4];
    GetPaddings(pads, context);
W
whs 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    auto mode = context.Attr<std::string>("mode");
    auto data_format = context.Attr<std::string>("data_format");
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* d_in = context.Output<Tensor>(framework::GradVarName("X"));
    auto d_in_dims = d_in->dims();
    auto d_out_dims = d_out->dims();
    const T* d_out_data = d_out->data<T>();
    T* d_in_data = d_in->mutable_data<T>(context.GetPlace());

    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    set_zero(context.template device_context<platform::CUDADeviceContext>(),
             d_in, static_cast<T>(0));

    const int pad_top = pads[0];
    const int pad_left = pads[2];
    const int num = d_in_dims[0];

    auto stream = context.cuda_device_context().stream();
    int block = PADDLE_CUDA_NUM_THREADS;
    const int out_size = d_out->numel();
    const int in_size = d_in->numel();
    int grid = (out_size + block - 1) / block;

    if (data_format == "NCHW") {
      const int channels = d_in_dims[1];
      const int in_height = d_in_dims[2];
      const int in_width = d_in_dims[3];
      const int out_height = d_out_dims[2];
      const int out_width = d_out_dims[3];
      if (mode == "reflect") {
        Pad2DGradReflectNCHW<T><<<grid, block, 0, stream>>>(
            out_size, d_in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, d_out_data);
      } else if (mode == "edge") {
        Pad2DGradEdgeNCHW<T><<<grid, block, 0, stream>>>(
            out_size, d_in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, d_out_data);
      } else {
        grid = (in_size + block - 1) / block;
        Pad2DGradConstNCHW<T><<<grid, block, 0, stream>>>(
            in_size, d_in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, d_out_data);
      }
    } else {
      const int channels = d_in_dims[3];
      const int in_height = d_in_dims[1];
      const int in_width = d_in_dims[2];
      const int out_height = d_out_dims[1];
      const int out_width = d_out_dims[2];
      if (mode == "reflect") {
        Pad2DGradReflectNHWC<T><<<grid, block, 0, stream>>>(
            out_size, d_in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, d_out_data);
      } else if (mode == "edge") {
        Pad2DGradEdgeNHWC<T><<<grid, block, 0, stream>>>(
            out_size, d_in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, d_out_data);
      } else {
        grid = (in_size + block - 1) / block;
        Pad2DGradConstNHWC<T><<<grid, block, 0, stream>>>(
            in_size, d_in_data, num, channels, in_height, in_width, out_height,
            out_width, pad_top, pad_left, d_out_data);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
460 461 462 463
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(pad2d, ops::Pad2dCUDAKernel<plat::float16>,
                        ops::Pad2dCUDAKernel<float>,
464 465
                        ops::Pad2dCUDAKernel<double>, ops::Pad2dCUDAKernel<int>,
                        ops::Pad2dCUDAKernel<int64_t>);
466 467
REGISTER_OP_CUDA_KERNEL(pad2d_grad, ops::Pad2dGradCUDAKernel<plat::float16>,
                        ops::Pad2dGradCUDAKernel<float>,
468
                        ops::Pad2dGradCUDAKernel<double>);