dist_hapi_mnist_dynamic.py 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import numpy as np
import contextlib

23 24
import paddle
import paddle.fluid as fluid
25

26 27
from paddle import Model, set_device
from paddle.static import InputSpec as Input
28
from paddle.nn.layer.loss import CrossEntropyLoss
29
from paddle.metric import Accuracy
30 31
from paddle.vision.models import LeNet
from paddle.vision.datasets import MNIST
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label

    def __getitem__(self, idx):
        img = np.reshape(self.images[idx], [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_accuracy(pred, gt):
    pred = np.argmax(pred, -1)
    gt = np.array(gt)

    correct = pred[:, np.newaxis] == gt

    return np.sum(correct) / correct.shape[0]


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestDistTraning(unittest.TestCase):
    def test_static_multiple_gpus(self):
        device = set_device('gpu')

        fluid.enable_dygraph(device)
        im_shape = (-1, 1, 28, 28)
        batch_size = 128

68 69
        inputs = [Input(im_shape, 'float32', 'image')]
        labels = [Input([None, 1], 'int64', 'label')]
70

71
        model = Model(LeNet(classifier_activation=None), inputs, labels)
72 73
        optim = fluid.optimizer.Momentum(
            learning_rate=0.001, momentum=.9, parameter_list=model.parameters())
74
        model.prepare(optim, CrossEntropyLoss(), Accuracy())
75 76 77 78 79

        train_dataset = MnistDataset(mode='train')
        val_dataset = MnistDataset(mode='test')
        test_dataset = MnistDataset(mode='test', return_label=False)

80
        cbk = paddle.callbacks.ProgBarLogger(50)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        model.fit(train_dataset,
                  val_dataset,
                  epochs=2,
                  batch_size=batch_size,
                  callbacks=cbk)

        eval_result = model.evaluate(val_dataset, batch_size=batch_size)

        output = model.predict(
            test_dataset, batch_size=batch_size, stack_outputs=True)

        np.testing.assert_equal(output[0].shape[0], len(test_dataset))

        acc = compute_accuracy(output[0], val_dataset.labels)

        np.testing.assert_allclose(acc, eval_result['acc'])


if __name__ == '__main__':
    unittest.main()