cross_entropy_op.cc 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cross_entropy_op.h"
Q
Qiao Longfei 已提交
16 17 18 19

namespace paddle {
namespace operators {

20
class CrossEntropyOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26 27
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
28

Q
Qiao Longfei 已提交
29 30
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
F
stash  
fengjiayi 已提交
31 32 33 34 35 36 37
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(rank, label_dims.size(),
                      "Input(X) and Input(Label) shall have the same rank.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                      framework::slice_ddim(label_dims, 0, rank - 1),
                      "Input(X) and Input(Label) shall have the same shape "
                      "except the last dimension.");
38
    if (ctx->Attrs().Get<bool>("soft_label")) {
F
stash  
fengjiayi 已提交
39 40
      PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
                        "If Attr(soft_label) == true, the last dimension of "
C
caoying03 已提交
41
                        "Input(X) and Input(Label) should be equal.");
42
    } else {
F
stash  
fengjiayi 已提交
43 44
      PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
                        "If Attr(softLabel) == false, the last dimension of "
C
caoying03 已提交
45
                        "Input(Label) should be 1.");
46
    }
47

F
fengjiayi 已提交
48 49 50
    auto y_dims = x_dims;
    y_dims[rank - 1] = 1;
    ctx->SetOutputDim("Y", y_dims);
Q
Qiao Longfei 已提交
51
    ctx->ShareLoD("X", /*->*/ "Y");
Q
Qiao Longfei 已提交
52
  }
Y
Yu Yang 已提交
53

54
 protected:
C
Cao Ying 已提交
55
  // Explicitly set that the data type of computation kernel of cross_entropy
C
caoying03 已提交
56
  // is determined by its input "X".
57
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
58
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
59 60 61
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
62
  }
Q
Qiao Longfei 已提交
63 64
};

65
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
66 67 68
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

69
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
70 71 72 73 74 75
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");
76

Q
Qiao Longfei 已提交
77 78 79
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
F
stash  
fengjiayi 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
                      "Input(Y@Grad) and Input(X) should have the same rank.");
    PADDLE_ENFORCE_EQ(label_dims.size(), rank,
                      "Input(Label) and Input(X) should have the same rank.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                      framework::slice_ddim(label_dims, 0, rank - 1),
                      "The Input(X) and Input(Label) should have the same "
                      "shape except the last dimension.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                      framework::slice_ddim(dy_dims, 0, rank - 1),
                      "The Input(X) and Input(Y@Grad) should have the same "
                      "shape except the last dimension.");
    PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
                      "The last dimension of Input(Y@Grad) should be 1.");
95
    if (ctx->Attrs().Get<bool>("soft_label")) {
F
stash  
fengjiayi 已提交
96 97
      PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
                        "When Attr(soft_label) == true, the last dimension of "
C
caoying03 已提交
98
                        "Input(X) and Input(Label) should be equal.");
99
    } else {
F
stash  
fengjiayi 已提交
100 101
      PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
                        "When Attr(soft_label) == false, the last dimension of "
C
caoying03 已提交
102
                        "Input(Label) should be 1.");
103
    }
Q
Qiao Longfei 已提交
104
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
Q
Qiao Longfei 已提交
105
    ctx->ShareLoD("X", framework::GradVarName("X"));
Y
Yan Chunwei 已提交
106
  }
Y
Yu Yang 已提交
107

108
 protected:
C
Cao Ying 已提交
109 110
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
111
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
112
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
113 114 115
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
116
  }
Y
Yan Chunwei 已提交
117 118
};

119
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
120
 public:
Y
Yu Yang 已提交
121
  void Make() override {
C
caoying03 已提交
122
    AddInput("X",
F
stash  
fengjiayi 已提交
123 124 125 126 127 128 129 130 131 132
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "probability computed by the previous operator, which is almost "
             "always the result of a softmax operator.");
    AddInput(
        "Label",
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. When soft_label is set "
        "to false, the last dimension size is 1; when soft_label is set to "
        "true, the last dimension size is equal to the number of classes.");
C
caoying03 已提交
133
    AddOutput("Y",
F
stash  
fengjiayi 已提交
134 135 136
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the cross entropy loss.");
C
caoying03 已提交
137 138 139
    AddAttr<bool>("soft_label",
                  "(bool, default false), a flag indicating whether to "
                  "interpretate the given labels as soft labels.")
140
        .SetDefault(false);
141 142 143 144 145
    AddAttr<int>("ignore_index",
                 "(int, default -100), Specifies a target value that is"
                 "ignored and does not contribute to the input gradient."
                 "Only valid if soft_label is set to False")
        .SetDefault(-100);
Q
Qiao Longfei 已提交
146
    AddComment(R"DOC(
147
CrossEntropy Operator.
Q
Qiao Longfei 已提交
148

F
stash  
fengjiayi 已提交
149 150 151 152 153 154
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs. 
The matrix's second dimension(row length) is as same as the original last 
dimension, and the first dimension(column length) is the product of all other 
original dimensions. Then the softmax computation will take palce on each raw 
of flattened matrixs.

155 156 157
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
158
    soft_label = false, Label[i, 0] indicates the class index for sample i:
159

K
Kexin Zhao 已提交
160
                $Y[i] = -\log(X[i, Label[i]])$
Q
Qiao Longfei 已提交
161

162
2) Soft-label cross-entropy:
163
    soft_label = true, Label[i, j] indicates the soft label of class j
164
    for sample i:
165

K
Kexin Zhao 已提交
166
                $Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
167

168
   Please make sure that in this case the summuation of each row of Label
169 170 171 172 173 174
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
175

K
Kexin Zhao 已提交
176 177 178
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

Q
Qiao Longfei 已提交
179 180 181 182 183 184
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
185
namespace ops = paddle::operators;
186 187
using CPUCtx = paddle::platform::CPUDeviceContext;

Y
Yang Yang 已提交
188
REGISTER_OPERATOR(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
189 190
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(cross_entropy_grad, ops::CrossEntropyGradientOp);
191 192
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<CPUCtx, float>,
                       ops::CrossEntropyOpKernel<CPUCtx, double>);
193
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
194 195
                       ops::CrossEntropyGradientOpKernel<CPUCtx, float>,
                       ops::CrossEntropyGradientOpKernel<CPUCtx, double>);