kernel_selection.html 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Background &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
85 86 87
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
111 112
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
113 114
</ul>
</li>
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中提交训练作业</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_cn.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
138 139 140 141
</ul>
</li>
</ul>
</li>
142 143 144 145
<li class="toctree-l2"><a class="reference internal" href="../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
146 147
</ul>
</li>
148
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_cn.html">RNN模型</a><ul>
149 150 151 152
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
153 154
</ul>
</li>
155
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
156 157
</ul>
</li>
158 159 160
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_cn.html">如何贡献文档</a></li>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Background</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="background">
<span id="background"></span><h1>Background<a class="headerlink" href="#background" title="永久链接至标题"></a></h1>
202 203 204
<p>Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the <code class="docutils literal"><span class="pre">OpKernelType</span></code> to describe kernel types that operators can hold.</p>
<p>The <code class="docutils literal"><span class="pre">OpKernelType</span></code> is as follows:</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">struct</span> <span class="n">OpKernelType</span> <span class="p">{</span>
205 206
  <span class="n">Place</span> <span class="n">place_</span><span class="p">;</span>
  <span class="n">DataType</span> <span class="n">data_type_</span><span class="p">;</span>
207 208
  <span class="n">DataLayout</span> <span class="n">data_layout_</span><span class="p">;</span>
  <span class="n">LibraryType</span> <span class="n">library_type_</span><span class="p">;</span>
209 210 211
<span class="p">};</span>
</pre></div>
</div>
212 213 214 215 216 217
<ul class="simple">
<li>The <code class="docutils literal"><span class="pre">place_</span></code> is a descriptor of the device, e.g., CPUPlace, CUDAPlace.</li>
<li>The <code class="docutils literal"><span class="pre">data_type_</span></code> is the data type that this kernel performs on, e.g., <code class="docutils literal"><span class="pre">FP32</span></code>, <code class="docutils literal"><span class="pre">INT64</span></code>. Note that one kernel may have inputs with different data types. However, it will be a major <code class="docutils literal"><span class="pre">data_type</span></code>. For example, the <code class="docutils literal"><span class="pre">cross_entropy</span></code> takes <code class="docutils literal"><span class="pre">int64</span></code> as it label, and <code class="docutils literal"><span class="pre">double</span></code>/<code class="docutils literal"><span class="pre">float</span></code> as its input logit and output cost. The major <code class="docutils literal"><span class="pre">data_type</span></code> of <code class="docutils literal"><span class="pre">cross_entropy</span></code> is <code class="docutils literal"><span class="pre">float</span></code> or <code class="docutils literal"><span class="pre">double</span></code>.</li>
<li>The <code class="docutils literal"><span class="pre">data_layout_</span></code> is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as <code class="docutils literal"><span class="pre">nChw8c</span></code>. Each kind of layout will invoke the different kernel.</li>
<li>The <code class="docutils literal"><span class="pre">library_type_</span></code> describes the computational library, e.g., <code class="docutils literal"><span class="pre">MKLDNN</span></code>, <code class="docutils literal"><span class="pre">CUDNN</span></code>.</li>
</ul>
218 219 220 221 222 223 224 225 226
</div>
<div class="section" id="problem">
<span id="problem"></span><h1>Problem<a class="headerlink" href="#problem" title="永久链接至标题"></a></h1>
<p>We register a kernel for every operator and every kernel type ideally. However, it is impracticable for the following situations.</p>
<ol class="simple">
<li>Some operators, like CRF, are complicated and inefficient to be implemented on GPU. The CRF operator will only have a CPU kernel.</li>
<li>Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem.</li>
<li>Some layout and place are particular. One example is that MKLDNN uses <code class="docutils literal"><span class="pre">nChw8</span></code> and there is no other library uses <code class="docutils literal"><span class="pre">nChw8c</span></code>.</li>
</ol>
227 228 229 230 231 232 233 234 235 236 237
<p>Take one situation to give a detailed explanation, if we have two Operators: OP1 and OP2, OP1 has one output <code class="docutils literal"><span class="pre">op1_to_op2</span></code>, and <code class="docutils literal"><span class="pre">op1_to_op2</span></code> is the input of OP2.</p>
<p>If OP1 and OP2 run on the same place(for example CPUPlace), then <code class="docutils literal"><span class="pre">op1_2_op2</span></code> can be used directly by OP2.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">OP1</span><span class="p">(</span><span class="n">CPUPlace</span><span class="p">)</span>
     <span class="o">|</span>
 <span class="n">op1_2_op2</span>
     <span class="o">|</span>
<span class="n">OP2</span><span class="p">(</span><span class="n">CPUPlace</span><span class="p">)</span>
</pre></div>
</div>
<p>If OP1 and OP2 run one different place, then OP2 cannot <code class="docutils literal"><span class="pre">use</span> <span class="pre">op1_2_op2</span></code> directly.</p>
<p>Problems under these situations are similar. We can formalize this problem as follow.</p>
238 239
<p>We register kernels with types $KT = {kt_1, kt_2, kt_3, ...}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$.</p>
</div>
240 241 242 243
<div class="section" id="solution-data-transform">
<span id="solution-data-transform"></span><h1>Solution: data transform<a class="headerlink" href="#solution-data-transform" title="永久链接至标题"></a></h1>
<p>It is clear that transforming inputs of an operator to adapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods.</p>
<p>We can infer kernel type for each input of an operator. We let this kernel type as <code class="docutils literal"><span class="pre">actual</span> <span class="pre">kernel</span> <span class="pre">type</span> <span class="pre">for</span> <span class="pre">var</span></code>, which means this kernel type is the kernel type that can process this input variable.</p>
244
<p>We can get a kernel type by 1) The configuration of operator description. (Users may want to force use <code class="docutils literal"><span class="pre">MKL</span></code> for <code class="docutils literal"><span class="pre">conv</span></code> operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as <code class="docutils literal"><span class="pre">expect</span> <span class="pre">kernel</span> <span class="pre">type</span></code>.</p>
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
<p>We transform the input data from <code class="docutils literal"><span class="pre">actual</span></code> to <code class="docutils literal"><span class="pre">expect</span></code> if the actual kernel type is not as same as expect kernel type.</p>
<p>The algorithm is described as following</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="n">OperatorWithKernel</span><span class="o">::</span><span class="n">Run</span><span class="p">(</span>
        <span class="k">const</span> <span class="n">Scope</span><span class="o">&amp;</span> <span class="n">scope</span><span class="p">,</span>
        <span class="k">const</span> <span class="n">platform</span><span class="o">::</span><span class="n">Place</span><span class="o">&amp;</span> <span class="n">place</span><span class="p">)</span> <span class="k">const</span> <span class="p">{</span>
  <span class="n">ExecutionContext</span> <span class="n">ctx</span><span class="p">(...);</span>
  <span class="k">auto</span> <span class="n">expected_kernel_key</span> <span class="o">=</span> <span class="k">this</span><span class="o">-&gt;</span><span class="n">GetExpectedKernelType</span><span class="p">(</span><span class="n">ctx</span><span class="p">);</span>

  <span class="n">Scope</span><span class="o">&amp;</span> <span class="n">new_scope</span> <span class="o">=</span> <span class="n">scope</span><span class="p">.</span><span class="n">NewScope</span><span class="p">();</span>

  <span class="k">for</span> <span class="p">(</span><span class="k">auto</span><span class="o">&amp;</span> <span class="nl">var_name</span> <span class="p">:</span> <span class="k">this</span><span class="o">-&gt;</span><span class="n">Inputs</span><span class="p">())</span> <span class="p">{</span>
    <span class="k">auto</span><span class="o">*</span> <span class="n">tensor_in</span> <span class="o">=</span> <span class="n">GetTensor</span><span class="p">(</span><span class="n">var_name</span><span class="p">);</span>
    <span class="k">auto</span> <span class="n">kernel_type_for_var</span> <span class="o">=</span> <span class="k">this</span><span class="o">-&gt;</span><span class="n">GetKernelTypeForVar</span><span class="p">(...);</span>
    <span class="k">if</span> <span class="p">(</span><span class="n">kernel_type_for_var</span><span class="p">.</span><span class="n">place_</span> <span class="o">!=</span> <span class="n">expected_kernel_key</span><span class="p">.</span><span class="n">place_</span><span class="p">)</span> <span class="p">{</span>
      <span class="k">auto</span><span class="o">*</span> <span class="n">trans_var</span> <span class="o">=</span> <span class="n">new_scope</span><span class="p">.</span><span class="n">Var</span><span class="p">(</span><span class="n">var_name</span><span class="p">);</span>
      <span class="k">auto</span><span class="o">*</span> <span class="n">out</span> <span class="o">=</span> <span class="n">DataTransform</span><span class="p">(</span><span class="n">expected_kernel_key</span><span class="p">,</span>
                                <span class="n">kernel_type_for_var</span><span class="p">,</span>
                                <span class="o">*</span><span class="n">tensor_in</span><span class="p">);</span>
      <span class="n">CopyVariableWithTensor</span><span class="p">(...);</span>
    <span class="p">}</span>
  <span class="p">}</span>

  <span class="k">auto</span> <span class="n">kernel</span> <span class="o">=</span> <span class="n">kernels</span><span class="p">.</span><span class="n">find</span><span class="p">(</span><span class="n">expected_kernel_key</span><span class="p">);</span>
  <span class="n">kernel</span><span class="o">-&gt;</span><span class="n">Compute</span><span class="p">(</span><span class="n">ExecutionContext</span><span class="p">(...));</span>
269 270 271
<span class="p">}</span>
</pre></div>
</div>
272 273 274 275 276 277 278 279 280 281 282 283
<p>then the actual process for the multi-device above will be:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">OP1</span><span class="p">(</span><span class="n">CPUPlace</span><span class="p">)</span>
     <span class="o">|</span>
<span class="n">op1_2_op2</span><span class="p">(</span><span class="n">on</span> <span class="n">CPU</span><span class="p">)</span>
     <span class="o">|</span>
<span class="p">[</span><span class="n">transform</span><span class="p">](</span><span class="kn">from</span> <span class="nn">CPU</span> <span class="n">to</span> <span class="n">GPU</span><span class="p">)</span>
     <span class="o">|</span>
<span class="n">op1_2_op2</span><span class="p">(</span><span class="n">on</span> <span class="n">GPU</span><span class="p">)</span>
     <span class="o">|</span>
<span class="n">OP2</span><span class="p">(</span><span class="n">CUDAPlace</span><span class="p">)</span>
</pre></div>
</div>
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>