test_spp_op.py 2.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

S
sweetsky0901 已提交
17 18
import unittest
import numpy as np
19 20 21
from op_test import OpTest
from test_pool2d_op import max_pool2D_forward_naive
from test_pool2d_op import avg_pool2D_forward_naive
S
sweetsky0901 已提交
22 23 24 25 26 27 28 29 30


class TestSppOp(OpTest):
    def setUp(self):
        self.op_type = "spp"
        self.init_test_case()
        input = np.random.random(self.shape).astype("float32")
        nsize, csize, hsize, wsize = input.shape
        out_level_flatten = []
31
        for i in range(self.pyramid_height):
S
sweetsky0901 已提交
32
            bins = np.power(2, i)
S
sweetsky0901 已提交
33
            kernel_size = [0, 0]
S
sweetsky0901 已提交
34
            padding = [0, 0]
S
sweetsky0901 已提交
35 36 37 38 39 40 41 42 43
            kernel_size[0] = np.ceil(hsize /
                                     bins.astype("double")).astype("int32")
            padding[0] = (
                (kernel_size[0] * bins - hsize + 1) / 2).astype("int32")

            kernel_size[1] = np.ceil(wsize /
                                     bins.astype("double")).astype("int32")
            padding[1] = (
                (kernel_size[1] * bins - wsize + 1) / 2).astype("int32")
S
sweetsky0901 已提交
44 45
            out_level = self.pool2D_forward_naive(input, kernel_size,
                                                  kernel_size, padding)
S
sweetsky0901 已提交
46 47 48 49 50 51 52 53
            out_level_flatten.append(
                out_level.reshape(nsize, bins * bins * csize))
            if i == 0:
                output = out_level_flatten[i]
            else:
                output = np.concatenate((output, out_level_flatten[i]), 1)
        # output = np.concatenate(out_level_flatten.tolist(), 0);
        self.inputs = {'X': input.astype('float32'), }
S
sweetsky0901 已提交
54 55 56 57
        self.attrs = {
            'pyramid_height': self.pyramid_height,
            'pooling_type': self.pool_type
        }
S
sweetsky0901 已提交
58 59 60 61 62 63 64

        self.outputs = {'Out': output.astype('float32')}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
sweetsky0901 已提交
65 66
        if self.pool_type != "avg":
            self.check_grad(['X'], 'Out', max_relative_error=0.05)
S
sweetsky0901 已提交
67 68

    def init_test_case(self):
S
sweetsky0901 已提交
69 70
        self.shape = [3, 2, 4, 4]
        self.pyramid_height = 3
S
sweetsky0901 已提交
71 72 73 74 75 76 77 78 79 80
        self.pool2D_forward_naive = max_pool2D_forward_naive
        self.pool_type = "max"


class TestCase2(TestSppOp):
    def init_test_case(self):
        self.shape = [3, 2, 4, 4]
        self.pyramid_height = 3
        self.pool2D_forward_naive = avg_pool2D_forward_naive
        self.pool_type = "avg"
S
sweetsky0901 已提交
81 82 83 84


if __name__ == '__main__':
    unittest.main()