test_elementwise_min_op.py 4.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

F
fengjiayi 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
F
fengjiayi 已提交
20 21 22 23 24


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_min"
F
fengjiayi 已提交
25
        # If x and y have the same value, the min() is not differentiable.
F
fengjiayi 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float32")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float32")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))


49 50 51 52 53 54 55 56 57
class TestElementwiseMinOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.random_integers(-5, 5, [2, 3, 4]).astype("float32")
        y = np.array([0.5]).astype("float32")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.random((32, )).astype("float32")
        sgn = np.random.choice([-1, 1], (32, )).astype("float32")
        y = x + sgn * np.random.uniform(0.1, 1, (32, )).astype("float32")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
        sgn = np.random.choice([-1, 1], (2, )).astype(np.float32)
        y = x[:, 0, 0] + sgn * \
            np.random.uniform(1, 2, (2, )).astype(np.float32)
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
        }


class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
        sgn = np.random.choice([-1, 1], (3, )).astype(np.float32)
        y = x[0, :, 0] + sgn * \
            np.random.uniform(1, 2, (3, )).astype(np.float32)
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
        }


class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
        sgn = np.random.choice([-1, 1], (4, )).astype(np.float32)
        y = x[0, 0, :] + sgn * \
            np.random.uniform(1, 2, (4, )).astype(np.float32)
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
            'Out':
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
        }


class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32)
        sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32)
        y = x[0, :, :, 0] + sgn * \
            np.random.uniform(1, 2, (3, 4)).astype(np.float32)
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
        }


if __name__ == '__main__':
    unittest.main()