ParameterClient2.h 20.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <atomic>
#include <mutex>
#include <unordered_map>
Y
Yu Yang 已提交
20
#include <vector>
21 22

#include "paddle/math/Matrix.h"
Y
Yu Yang 已提交
23
#include "paddle/math/Vector.h"
24
#include "paddle/parameter/Parameter.h"
Y
Yu Yang 已提交
25
#include "paddle/pserver/BaseClient.h"
26
#include "paddle/utils/Common.h"
Y
Yu Yang 已提交
27 28
#include "paddle/utils/Flags.h"
#include "paddle/utils/Locks.h"
29 30 31 32 33 34
#include "paddle/utils/Queue.h"
#include "paddle/utils/Util.h"

#include "ParameterService.pb.h"

#include "ProtoServer.h"
Y
Yu Yang 已提交
35
#include "SparseParameterDistribution.h"
36

37
DECLARE_int32(parallel_thread_num);
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

namespace paddle {

struct PServerMatrix {
  int64_t handle;
};

struct PServerVector {
  int64_t handle;
};

/**
 * @brief A class to help to prepare server-side operations.
 */
class PreparedOperations {
protected:
  class ResultsAdder;
  struct LocalOperationResult;

public:
  /**
   * Offers an easy way to prepare operations that will be performed on
   * server-side.
   *
   * Usage:
   * @code
   *   addOperation(optype, arguments...)(results...)
   * @endcode
   *
   * Examples:
   * 1. set pserver vector to 1:
   * @code
   *   PServerVector u = parameterClient.createVector();
   *   addOperation(PSERVER_OP_RESET, u, (real)1);
   * @endcode
   *
   * 2. Compute inner product of to pserver vectors.
   * @code
   *   PServerVector u = parameterClient.createVector();
   *   PServerVector v = parameterClient.createVector();
   *   real result;
   *   addOperation(PSERVER_OP_utv, u, v)(&result)
   * @endcode
   *
   * @param[in] operation The operation that pserver will perform.
   * @param[in] args Argument list of the operation
   * @return A ResultsAdder object initialized with the last element of
   *         localResults_.
   */
  template <typename... Args>
  ResultsAdder addOperation(MatrixVectorOperation operation, Args... args) {
    Operation* op = request_.add_operations();
    op->set_operation(operation);
    localResults_.emplace_back();
    addOperationHelper(op, args...);
    return ResultsAdder(&localResults_.back());
  }

protected:
  void addOperationHelper(Operation* op) {}

  /**
   * @brief Helper function to add an new operation that takes a PServerVector
   *        as an operand.
   */
  void addOperationHelper(Operation* op, PServerVector arg) {
    op->add_pvectors(arg.handle);
  }

  /**
   * @brief Helper function to add an new operation that takes a PServerMatrix
   *        as an operand.
   */
  void addOperationHelper(Operation* op, PServerMatrix arg) {
    op->add_pmatrices(arg.handle);
  }

  /**
   * @brief Helper function to add an new operation that takes a real valued
   *        scalar as an operand.
   */
  void addOperationHelper(Operation* op, real arg) { op->add_scalars(arg); }

  /**
   * @brief Helper function to add an new operation that takes a CpuVectorPtr
   *        as an operand.
   * @note The array of CpuVectors that arg points to will be copied to
   *       op's vectors field.
   */
  void addOperationHelper(Operation* op, CpuVectorPtr arg);

  /**
   * @brief Helper function to add an new operation that takes a CpuMatrixPtr
   *        as an operand.
   * @note The array of CpuMatrixs that arg points to will be copied to
   *       op's matrices field.
   */
  void addOperationHelper(Operation* op, CpuMatrixPtr arg);

  /**
   * @brief Helper function to add an new operation and prepare the operands.
   *
   * @tparam Arg An operand of the operation.
   * @tparam Args A list of rest operands of the operation.
   * @param op Pointer to an Operation object.
   */
  template <typename Arg, typename... Args>
  void addOperationHelper(Operation* op, Arg arg, Args... args) {
    addOperationHelper(op, arg);
    addOperationHelper(op, args...);
  }

  /**
   * @brief ResultsAdder offers easy ways to quickly store operation results.
   */
  class ResultsAdder {
  public:
    explicit ResultsAdder(LocalOperationResult* localResult)
        : localResult_(localResult) {}
    template <typename... Args>
    void operator()(Args... args) {
      addResult(args...);
    }
    void addResult() {}
    void addResult(real* arg) { localResult_->resultScalars.push_back(arg); }
    void AddResult(CpuVectorPtr arg) {
      localResult_->resultVectors.push_back(arg);
    }
    void AddResult(CpuMatrixPtr arg) {
      localResult_->resultMatrices.push_back(arg);
    }
    template <typename Arg, typename... Args>
    void addResult(Arg arg, Args... args) {
      addResult(arg);
      addResult(args...);
    }

  protected:
    LocalOperationResult* localResult_;
  };

protected:
  DoOperationRequest request_;
  std::vector<iovec> inputIovs_;
  struct LocalOperationResult {
    std::vector<real*> resultScalars;
    std::vector<CpuVectorPtr> resultVectors;
    std::vector<CpuMatrixPtr> resultMatrices;
  };
  std::vector<LocalOperationResult> localResults_;
  friend class ParameterClient2;
};

struct ParameterSegments {
192 193
  std::string name;  // name of the parameter
  size_t id;         // id of the parameter
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
};

/**
 * The client interface for parameter server. ParameterClient2 supports 2 modes
 * for managing connections to parameter servers, in the 1st mode one connection
 * is shared by 2 threads that are separately responsible for sending and
 * recieving activities, in the 2nd mode one connection is owned by only one
 * thread, and all the sending and recieving activities run in that single
 * thread.
 * TODO(yanfei):
 * Additional core idea to further optimizate pserver performance is
 * to do sync-sgd based parameter level instead of pserver level.
 * full-parallelization based parameter level for sync-sgd also can
 * sense forwardbackward computation layer-by-layer for more deeper layer
 * model.
 * Firstly, pserver can do full-parallelization on all computation based
 * parameter level instead of waiting for all gradients are finished and
 * start to send back parameters value immediately if parameter is ready
 * instead of waiting for all parameters value are ready
 * Secondly, parameter client can write back parameters to GPU instead of
 * waiting until all parameters are received to CPU host end.
 */
class ParameterClient2 : public BaseClient {
public:
  /** Constructor.
   * @param separate True if sending and recieving activities are separated
   *                 into 2 threads, otherwise false.
   * @param port Port number that parameter client runs on.
   * @param numPorts Number of ports parameter clients occupies,
   *                 numPorts * pserver number is the total number of
   *                 connections the parameter client maintains.
   */
  ParameterClient2(bool separate = false,
227 228
                   int port = FLAGS_port,
                   int numPorts = FLAGS_ports_num);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

  ~ParameterClient2();

  static int calcParameterBlockSize(const std::vector<ParameterPtr>& parameters,
                                    size_t serviceNum);

public:
  bool init(const std::vector<ParameterPtr>& parameters);

  /// service functions

  /**
   * @brief Sends the segments in parameter to parameter servers, then receives
   *        the response from the servers.
   * @param[in] updateMode Indicates how parameters should be updated on the
   *            server side.
   * @param[in] parameterType Type of parameter that will be sent.
   * @param[in] segments Segments in the parameter that will be sent.
   * @param[in] numSamples Number of samples this update is based on.
   * @param[in] cost Cost of the batch, will be used to calculate global object
   *            value.
   * @param[in] sendBackParameter True if the updated parameters should be sent
   *            back, otherwise false.
   * @param[in] sendBackParameterType Send back parameter type on pserver,
   *            PARAMETER_VALUE by default
   * @param[in] recvParameterType pserver[sendBackParameterType] will be copy to
   *            client[recvParameterType]
   * @note Only parameterType will be sent.
   */
258 259 260 261 262 263 264 265
  void sendAndReceiveParameter(ParameterUpdateMode updateMode,
                               ParameterType parameterType,
                               const std::vector<ParameterSegments>& segments,
                               int64_t numSamples,
                               real cost,
                               bool sendBackParameter,
                               ParameterType sendBackParameterType,
                               ParameterType recvParameterType);
266 267 268 269 270 271 272 273 274 275 276 277 278

  /**
   * @brief Sends all parameters to parameter servers, and receives the response
   *        from the servers.
   */
  void sendAndReceiveParameter(
      ParameterUpdateMode updateMode,
      ParameterType parameterType,
      int64_t numSamples,
      real cost,
      bool sendBackParameter,
      ParameterType sendBackParameterType = PARAMETER_VALUE,
      ParameterType recvParameterType = PARAMETER_VALUE) {
279 280 281 282 283 284 285
    sendAndReceiveParameter(updateMode,
                            parameterType,
                            allSegments_,
                            numSamples,
                            cost,
                            sendBackParameter,
                            sendBackParameterType,
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
                            recvParameterType);
  }

  /**
   * @brief Sends the segments in parameter to parameter servers. Each
   *        sendParameter() must be paired with a recvParameter() in the future.
   *        Only parameterType will be sent.
   *
   * @param[in] updateMode Indicates how parameters should be updated on the
   *            server side.
   * @param[in] parameterType Type of parameter that will be sent.
   * @param[in] segments Segments in the parameter that will be sent.
   * @param[in] numSamples Number of samples this update is based on.
   * @param[in] cost Cost of the batch, will be used to calculate global object
   *            value.
   * @param[in] sendBackParameter True if the updated parameters should be sent
   *            back, otherwise false.
   * @param[in] batchStatus Status of the batch.
   * @note This function is non-blocking. This means that parameter should
   *       not change between this call and recvParameter()
   */
  void sendParameter(ParameterUpdateMode updateMode,
                     ParameterType parameterType,
                     const std::vector<ParameterSegments>& segments,
310 311 312
                     int64_t numSamples,
                     real cost,
                     bool sendBackParameter,
313 314 315 316 317
                     BatchStatus batchStatus);

  void recvParameter();

  /**
318 319
   * Sends all parameters to parameter servers, recvParameter() have to be
   * invoked
320 321 322 323 324 325
   * afterwards.
   *
   * @note This function is non-blocking. This means that if parameter should
   *       not changes between this call and recvParameter()
   */
  void sendParameter(ParameterUpdateMode updateMode,
326 327 328 329 330 331 332 333 334 335 336 337
                     ParameterType parameterType,
                     int64_t numSamples,
                     real cost,
                     bool sendBackParameter,
                     BatchStatus batchStatus) {
    sendParameter(updateMode,
                  parameterType,
                  allSegments_,
                  numSamples,
                  cost,
                  sendBackParameter,
                  batchStatus);
338 339 340 341 342
  }

  /// Get all parameters from parameter servers
  void getParameter(ParameterType recvParameterType = PARAMETER_VALUE,
                    ParameterType sendBackParameterType = PARAMETER_VALUE) {
343 344
    sendAndReceiveParameter(PSERVER_UPDATE_MODE_GET_PARAM,
                            PARAMETER_VALUE,
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
                            0,     // numSamples = 0
                            0,     // cost = 0
                            true,  // sendBackParameter = true
                            sendBackParameterType,
                            recvParameterType);
  }

  /// Get parameters by sparse row ids from parameter servers
  void getParameterSparse(
      ParameterType recvParameterType = PARAMETER_VALUE,
      ParameterType sendBackParameterType = PARAMETER_VALUE) {
    sendAndReceiveParameter(PSERVER_UPDATE_MODE_GET_PARAM_SPARSE,
                            PARAMETER_VALUE,
                            0,     // numSamples = 0
                            0,     // cost = 0
                            true,  // sendBackParameter = true
361 362
                            sendBackParameterType,
                            recvParameterType);
363 364 365 366
  }

  /// Set all parameters on parameter servers using the local parameters
  void setParameter() {
367 368
    sendAndReceiveParameter(PSERVER_UPDATE_MODE_SET_PARAM,
                            PARAMETER_VALUE,
369 370 371 372 373 374 375 376 377
                            0,       // numSamples = 0
                            0,       // cost = 0
                            false);  // sendBackParameter = false
  }
  /**
   * Set all parameters on parameter servers, values will be zero
   * means do not sending local parameters
   */
  void setParameterZero() {
378 379
    sendAndReceiveParameter(PSERVER_UPDATE_MODE_SET_PARAM_ZERO,
                            PARAMETER_VALUE,
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
                            0,       // numSamples = 0
                            0,       // cost = 0
                            false);  // sendBackParameter = false
  }

  /**
   * @brief Wait until all gradient servers start one pass.
   *
   * @note This is now only used by the gradient servers for "sgd"
   *       algorithm. Calling this function means that the calling gradient
   *       server is ready to start a new pass.
   */
  void waitPassStart();

  /**
   * @brief Wait until all gradient servers finish one pass.
   *
   * @note This is now only used by the gradient servers for "sgd" algorithm.
   *       Calling this function means that the calling gradient server
   *       finishes one pass.
   */
  void waitPassFinish();

  /// Wait until all gradient servers call this function.
  void synchronize(SyncObject syncObjectId = SYNC_DEFAULT);

  /// Called when async-sgd finish pass.
  void asyncFinishPass(SyncObject syncObjectId = SYNC_DEFAULT);

  void asyncStartPass(SyncObject syncObjectId = SYNC_DEFAULT) {
    return synchronize(syncObjectId);
  }

  /**
   * @brief Execute the prepared operations on pservers, fetch the results and
   *        aggregate results from different pservers.
   * @param[in] ops Prepared operations that will be executed on pservers.
   * @param[in] waitForGradient If true, wait for gradient to be ready before
   *            starting the operations.
   * @param[in] sendBackParameter If true, send back the parameter to clients
   *            after the operations are finished.
   * @param[in] If true, and if all clients call waitPassFinish, signal all
   *            clients finish the pass.
   */
424 425 426 427
  void doOperation(PreparedOperations& ops,
                   bool waitForGradient,
                   bool sendBackParameter,
                   bool releasePass = true);
428 429 430 431 432 433

  /**
   * Set the configuration of pserver, including parameter config and
   * optimization config
   */
  void setConfig(const OptimizationConfig& optConfig,
434 435
                 const std::string& saveDir = "",
                 bool isSparseServer = false);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

  /// Return true if all pservers are in the given status
  bool inStatus(PServerStatus status);
  bool isPassFinish() { return passFinish_; }

  /// Set pserver status
  void setStatus(PServerStatus status);

  /**
   * @brief Wait until all pservers are at status
   * @note This function is not suitable for frequent use,
   *       because it sleeps 1 second each time when condition is satisfied.
   */
  void waitForStatus(PServerStatus status);

  /// Create a column vector. The size is the dimension of parameter.
  PServerVector createVector();

  /// Release the PServerVector given handle.
  void releaseVector(PServerVector handle);

  /**
   * Create a column major matrix. The number of rows is the dimension of
   * parameter. The number of columns is specifed by numCols.
   */
  PServerMatrix createMatrix(int32_t numCols);

  /// Release the PServerMatrix given handle.
  void releaseMatrix(PServerMatrix handle);

  // Some basic algebra functions
  /// Calculate the dot product of u and v
  real vectorDotProduct(PServerVector u, PServerVector v);

  /// Scale u by a
  void vectorScale(PServerVector u, real a);

  /// Copy from src to dest
  void vectorCopy(PServerVector src, PServerVector dst);

  /// u += v * a
  void vectorAddMult(PServerVector u, PServerVector v, real a);

  /// u = v + w * a
480 481 482
  void vectorAddMultInto(PServerVector u,
                         PServerVector v,
                         PServerVector w,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
                         real a);
  /// u = v * a
  void vectorScaleInto(PServerVector u, PServerVector v, real a);

  /// Return pserver parameter value.
  PServerVector getPServerParameterValue() {
    PServerVector vec;
    vec.handle = PARAMETER_VALUE;
    return vec;
  }

  /// Return pserver parameter gradient.
  PServerVector getPServerParameterGradient() {
    PServerVector vec;
    vec.handle = PARAMETER_GRADIENT;
    return vec;
  }

  /**
   * Tell pservers to load value vector from file.
   *
   * @param[in] dirName The directory that contains the value vector file.
   */
  void loadValueVector(const std::string& dirName);

  /// Tell pservers to save value vector to file.
  void saveValueVector(const std::string& dirName);

  void setTrainerId(int trainerId) { trainerId_ = trainerId; }

#ifndef PADDLE_DISABLE_TIMER
  void setForwardbackwardTime(uint64_t delta) { forwardbackwordTime_ = delta; }
#endif

protected:
  template <typename ProtoIn, typename ProtoOut>
519 520
  void multiCall(const char* funcName,
                 const ProtoIn& request,
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
                 std::vector<ProtoOut>* responses) {
    responses->resize(clients_.size());
    size_t numClients = clients_.size();
    for (size_t i = 0; i < numClients; ++i) {
      clients_[i].send(funcName, request);
    }
    for (size_t i = 0; i < numClients; ++i) {
      clients_[i].recv(&(*responses)[i]);
    }
  }

private:
  void destroy();

  /**
   * @brief management function for parallelizing send/recv all connections
   *        to all pservers. it is called under one SyncThreadPool. it
   *        supports to use N thread to control M connections. the receiving
   *        actions can be started until all sending action to all connections
540 541
   *        owned by current thread are finished. Different connections
   * controlled
542 543
   *        by different threads can transfer data asynchronously.
   */
544 545
  void sendParallel(int tid,
                    size_t numThreads,
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
                    ParameterType recvParameterType);
  /// sending thread routine for asynchronously send data
  void send(int threadId);
  /// receiving thread routing for asynchronously receive data
  void recv(int threadId);

  /**
   * @brief main routine to build data for pserver
   *
   * @note  it can prepare different kinds of parameter type data. it can
   *        be regarded as layer for bridging real parameters data and
   *        protobuf data for communication.
   *        TODO(yanfei):
   *        can abstract additional layer to encode and decode data to/from
   *        protobuf data.
   */
  void prepareSendData(
      ParameterUpdateMode updateMode,
      ParameterType parameterType,  // client send type
      const std::vector<ParameterSegments>& parameterSegments,
566 567 568
      int64_t numSamples,
      real cost,
      bool sendBackParameter,
569
      ParameterType sendBackParameterType,  // send back type in pserver
570 571
      BatchStatus batchStatus,
      SendJob* sendJob);
572 573 574 575 576 577 578 579 580 581 582 583 584 585

  /// start necessary threads for threadPool
  void initThreads();

protected:
  /// start port number of pserver
  /// it deduce all ports for dense and sparse with some rules
  int port_;
  /// identify the trainer id using this client
  int trainerId_;

#ifndef PADDLE_DISABLE_TIMER
  uint64_t forwardbackwordTime_;
#endif
586
  std::mutex sparseAutoGrowthMutex_;
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

  /// map id to parameter used for decoding protobuf data
  std::unordered_map<size_t, ParameterPtr> parameterMap_;
  /// segments for all parameters that needed to sync
  std::vector<ParameterSegments> allSegments_;

  /// module for sensing sparse parameters distribution on all pservers
  std::unique_ptr<SparseParameterDistribution> sparseDistribution_;

  /// thread pool for parallelizing all connections to pservers
  std::unique_ptr<SyncThreadPool> syncThreadPool_;

  bool passFinish_;
};

}  // namespace paddle
新手
引导
客服 返回
顶部