sparse_sharding_merge.h 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sys/time.h>

#include <iostream>
#include <ostream>
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include <ThreadPool.h>
#include "boost/lexical_cast.hpp"
#include "glog/logging.h"
#include "paddle/fluid/distributed/common/utils.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/dim.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/string/split.h"

constexpr int FG = 256 * 1024 * 1024;
constexpr int Q_SIZE = 10000;
constexpr int BUCKET = 10;
constexpr char XEOF[] = "EOF";

using boost::lexical_cast;

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

namespace paddle {
namespace distributed {

class ShardingMerge {
 public:
  ShardingMerge() {}
  ~ShardingMerge() {}

  void Merge(const std::vector<std::string> &inputs,
             const std::vector<int64_t> &feasigns, const std::string &output,
             const int embedding_dim) {
    pool_.reset(new ::ThreadPool(inputs.size()));

    std::vector<std::future<int>> tasks(inputs.size());
    std::vector<std::vector<int64_t>> rows;
    rows.resize(inputs.size());

    auto begin = GetCurrentUS();
    for (int x = 0; x < inputs.size(); ++x) {
      tasks[x] = pool_->enqueue([this, x, &rows, &inputs, &feasigns]() -> int {
        DeserializeRowsFromFile(inputs[x], feasigns[x], &rows[x]);
        return 0;
      });
    }

    for (size_t x = 0; x < tasks.size(); ++x) {
      tasks[x].wait();
    }

    int64_t total_rows = 0;
    for (auto x = 0; x < rows.size(); x++) {
      total_rows += rows[x].size();
    }

    auto end = GetCurrentUS();

    VLOG(0) << "got " << total_rows
            << " feasigin ids from sparse embedding using " << end - begin;

    std::vector<int64_t> total_dims = {total_rows,
                                       static_cast<int64_t>(embedding_dim)};

    std::vector<std::vector<int>> batch_buckets;
    batch_buckets.resize(inputs.size());

    for (int x = 0; x < rows.size(); ++x) {
      batch_buckets[x] = bucket(rows[x].size(), BUCKET);
    }

    std::ofstream out(output, std::ios::binary);

    begin = GetCurrentUS();
    SerializeRowsToStream(out, rows, batch_buckets, total_rows);
    end = GetCurrentUS();
    VLOG(0) << "write rows to oostrream using " << end - begin;

    begin = GetCurrentUS();
    SerializePreTensorToStream(out, total_dims);
    end = GetCurrentUS();
    VLOG(0) << "write pretensor to oostrream using " << end - begin;

    begin = GetCurrentUS();
    SerializeValueToStream(out, inputs, batch_buckets, embedding_dim);
    end = GetCurrentUS();
    VLOG(0) << "write values to oostrream using " << end - begin;
  }

 private:
  void SerializeRowsToStream(std::ostream &os,
                             const std::vector<std::vector<int64_t>> &rows,
                             const std::vector<std::vector<int>> &batch_buckets,
                             int64_t total_rows) {
    {  // the 1st field, uint32_t version
      constexpr uint32_t version = 0;
      os.write(reinterpret_cast<const char *>(&version), sizeof(version));
    }

    {
      // the 2st field, rows information
      os.write(reinterpret_cast<const char *>(&total_rows), sizeof(total_rows));

      for (int b = 0; b < BUCKET; ++b) {
        for (int x = 0; x < batch_buckets.size(); ++x) {
          auto begin = batch_buckets[x][b];
          auto end = batch_buckets[x][b + 1];

          if (end - begin == 0) continue;

          os.write(reinterpret_cast<const char *>(rows[x].data() + begin),
                   sizeof(int64_t) * (end - begin));
        }
      }

      // the 3st field, the height of SelectedRows
      int64_t height = total_rows;
      os.write(reinterpret_cast<const char *>(&height), sizeof(height));
    }
  }

  void SerializePreTensorToStream(std::ostream &os,
                                  const std::vector<int64_t> &dims) {
    {  // the 1st field, uint32_t version
      constexpr uint32_t version = 0;
      os.write(reinterpret_cast<const char *>(&version), sizeof(version));
    }
    {  // the 2nd field, tensor description
      // int32_t  size
      framework::proto::VarType::TensorDesc desc;
      desc.set_data_type(framework::proto::VarType::FP32);
      auto *pb_dims = desc.mutable_dims();
      pb_dims->Resize(static_cast<int>(dims.size()), 0);
      std::copy(dims.begin(), dims.end(), pb_dims->begin());
      int32_t size = desc.ByteSize();
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      auto out = desc.SerializeAsString();
      os.write(out.data(), size);
    }
  }

  void SerializeValueToVec(std::ifstream &in, const int batch,
                           const int embedding_dim, std::vector<float> *out) {
    auto queue =
        std::make_shared<framework::BlockingQueue<std::vector<std::string>>>();

    auto read = [batch, &in, &queue]() {
      std::string line;
      std::vector<std::string> columns;
      std::vector<std::string> values_str;

      int count = 0;

      while (std::getline(in, line)) {
        ++count;
        columns = string::Split(line, '\t');

        if (columns.size() != 5) {
          VLOG(0) << "unexpected line: " << line << ", skip it";
          continue;
        }

        values_str = string::Split(columns[4], ',');
        queue->Push(values_str);

        if (count >= batch) {
          break;
        }
      }
      queue->Push({});
    };

    auto write = [embedding_dim, &out, &queue]() {
      std::vector<std::string> values_str;
      std::string line;

      while (true) {
        queue->Pop(&values_str);

        if (values_str.size() == 0) {
          break;
        }

        for (int x = 0; x < embedding_dim; ++x) {
          float v = 0.0;
          try {
            v = lexical_cast<float>(values_str[x]);
          } catch (boost::bad_lexical_cast &e) {
            VLOG(0) << " get unexpected line: " << line;
          }
          out->push_back(v);
        }
      }
    };

    std::thread p_read(read);
    std::thread p_write(write);
    p_read.join();
    p_write.join();
  }

  void SerializeVecToStream(std::ostream &out,
                            const std::vector<float> &value) {
    out.write(reinterpret_cast<const char *>(value.data()),
              static_cast<std::streamsize>(sizeof(float) * value.size()));
  }

  void SerializeValueToStream(
      std::ostream &out, const std::vector<std::string> &ins,
      const std::vector<std::vector<int>> &batch_buckets,
      const int embedding_dim) {
    std::vector<std::shared_ptr<std::ifstream>> in_streams;

    for (int x = 0; x < ins.size(); ++x) {
      in_streams.emplace_back(std::make_shared<std::ifstream>(ins[x]));
    }

    std::vector<std::future<int>> tasks(ins.size());

    for (int b = 0; b < BUCKET; ++b) {
      std::vector<std::vector<float>> values;
      values.resize(tasks.size());

      auto begin = GetCurrentUS();

      for (int x = 0; x < tasks.size(); ++x) {
        auto batch = batch_buckets[x][b + 1] - batch_buckets[x][b];
        values[x].clear();
        values[x].reserve(batch * embedding_dim);
      }

      for (int x = 0; x < tasks.size(); ++x) {
        tasks[x] =
            pool_->enqueue([this, b, x, &out, &in_streams, &batch_buckets,
                            &values, embedding_dim]() -> int {
              auto batch = batch_buckets[x][b + 1] - batch_buckets[x][b];
              if (batch == 0) return 0;
              SerializeValueToVec(*(in_streams[x].get()), batch, embedding_dim,
                                  &values[x]);
              return 0;
            });
      }

      for (size_t x = 0; x < tasks.size(); ++x) {
        tasks[x].wait();
      }

      auto end = GetCurrentUS();

      auto begin1 = GetCurrentUS();
      for (size_t x = 0; x < tasks.size(); ++x) {
        SerializeVecToStream(out, values[x]);
      }
      auto end1 = GetCurrentUS();

      VLOG(0) << "serialize buckets " << b << " read using " << end - begin
              << ", to oostream using " << end1 - begin1;
    }
  }

  void DeserializeRowsFromFile(const std::string &input_file,
                               const int64_t feasigns,
                               std::vector<int64_t> *rows) {
    std::string line;
    std::vector<std::string> columns;
    std::ifstream file(input_file);

    rows->reserve(feasigns);

    while (std::getline(file, line)) {
      columns = string::Split(line, '\t');
      if (columns.size() != 5) {
        VLOG(0) << "unexpected line: " << line << ", skip it";
        continue;
      }
      rows->push_back(std::stoull(columns[0]));
    }

    VLOG(0) << "parse " << rows->size() << " embedding rows from "
            << input_file;
  }

 private:
  std::unique_ptr<::ThreadPool> pool_;
};
}  // namespace distributed
}  // namespace paddle