test_matmul_op.py 11.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

M
Markus Kliegl 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
M
Markus Kliegl 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
C
chengduoZH 已提交
69 70 71
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
72 73 74 75
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
C
chengduoZH 已提交
76 77 78 79
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


class Generator(object):
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
            'transpose_Y': self.transpose_Y
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
104
        self.check_output()
M
Markus Kliegl 已提交
105 106

    def test_check_grad_normal(self):
107
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
M
Markus Kliegl 已提交
108 109 110

    def test_check_grad_ignore_x(self):
        self.check_grad(
111
            ['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X"))
M
Markus Kliegl 已提交
112 113 114

    def test_check_grad_ignore_y(self):
        self.check_grad(
115
            ['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y'))
M
Markus Kliegl 已提交
116 117


118
class TestMatmulOpError(unittest.TestCase):
119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The inputs type of matmul_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.matmul, input1, input1)
            # The inputs dtype of matmul_op must be float32, float64.
            input2 = fluid.layers.data(
                name='input2', shape=[10, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.matmul, input2, input2)
            input3 = fluid.layers.data(
                name='input3', shape=[2, 2], dtype="float16")
            fluid.layers.matmul(input3, input3)


133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
# Negative dimension generation
def generate_negative_dims(in_shape):
    from itertools import combinations
    size = len(in_shape)
    indexs = list()
    shapes = list()
    for i in range(size):
        indexs.extend(list(combinations([j for j in range(size)], i + 1)))
    for idx in indexs:
        shapes.append(
            [in_shape[i] if i not in idx else -1 for i in range(size)])
    return shapes


# Build program with inputs sizes that contain negative numbers
def test_negative_dims_program(obj):
    for shape_x in generate_negative_dims(obj.shape_X):
        for shape_y in generate_negative_dims(obj.shape_Y):
            X = np.random.random(obj.shape_X).astype("float32")
            Y = np.random.random(obj.shape_Y).astype("float32")
            Ref = reference_matmul(X, Y, obj.transpose_X, obj.transpose_Y)
            with program_guard(Program(), Program()):
                x = fluid.data(name='x', shape=shape_x, dtype='float32')
                y = fluid.data(name='y', shape=shape_y, dtype='float32')
                output = fluid.layers.matmul(x, y, obj.transpose_X,
                                             obj.transpose_Y)
                obj.assertEqual(len(Ref.shape), len(output.shape))
                for idx in range(len(Ref.shape)):
                    if output.shape[idx] != -1:
                        obj.assertEqual(Ref.shape[idx], output.shape[idx])
                exe = fluid.Executor(fluid.CPUPlace())
                res, = exe.run(fluid.default_main_program(),
                               feed={'x': X,
                                     'y': Y},
                               fetch_list=[output])
                np.allclose(res, Ref, atol=1e-5)


# Generate program api cases for all negative possibilities
def api_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulAPI_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
177
    globals()[test_name] = type(test_name, (unittest.TestCase, ), {
178 179 180 181 182 183 184 185 186
        'shape_X': shape_x,
        'shape_Y': shape_y,
        'transpose_X': trans_x,
        'transpose_Y': trans_y,
        'test_propram': test_negative_dims_program,
    })


# Generate operators cases for all possibilities
Y
Yu Yang 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
def inject_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
    globals()[test_name] = type(test_name, (Generator, OpTest), {
        'shape_X': shape_x,
        'shape_Y': shape_y,
        'transpose_X': trans_x,
        'transpose_Y': trans_y,
    })


for dim_X in (1, 2, 3):
    for dim_Y in (1, 2, 3):
        for transose_x in (False, True):
            for transose_y in (False, True):
                inject_test(dim_X, dim_Y, transose_x, transose_y)
205
                api_test(dim_X, dim_Y, transose_x, transose_y)
C
chengduoZH 已提交
206 207


C
chengduoZH 已提交
208
# Test case n-dim
C
chengduoZH 已提交
209 210 211 212 213 214 215 216
def generate_compatible_shapes(dim, transpose_X, transpose_Y):
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
217
        shape_X += [K, M]
C
chengduoZH 已提交
218
    else:
C
chengduoZH 已提交
219
        shape_X += [M, K]
C
chengduoZH 已提交
220 221

    if transpose_Y:
C
chengduoZH 已提交
222
        shape_Y += [N, K]
C
chengduoZH 已提交
223
    else:
C
chengduoZH 已提交
224
        shape_Y += [K, N]
C
chengduoZH 已提交
225 226 227 228

    return shape_X, shape_Y


Y
Yu Yang 已提交
229
# # Test case n-dim
C
chengduoZH 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
                    dim, dim, transpose_X, transpose_Y))
            shape_X, shape_Y = generate_compatible_shapes(dim, transpose_X,
                                                          transpose_Y)
            globals()[test_name] = type(test_name, (Generator, OpTest), {
                'shape_X': shape_X,
                'shape_Y': shape_Y,
                'transpose_X': transpose_X,
                'transpose_Y': transpose_Y,
            })
C
chengduoZH 已提交
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

class API_TestMm(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[3, 2], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')
            res = fluid.data(name="output", shape=[3, 3], dtype="float32")
            y_1 = paddle.mm(x, y, out=res)
            exe = fluid.Executor(fluid.CPUPlace())
            data1 = np.random.rand(3, 2).astype('float32')
            data2 = np.random.rand(2, 3).astype('float32')
            np_res, np_y_1 = exe.run(feed={'x': data1,
                                           'y': data2},
                                     fetch_list=[res, y_1])
        self.assertEqual((np_res == np_y_1).all(), True)

        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2], dtype="float32")
            y = fluid.data(name='y', shape=[2], dtype='float32')
            res = fluid.data(name="output", shape=[1], dtype="float32")
            result = paddle.mm(x, y)
            exe = fluid.Executor(fluid.CPUPlace())
            data1 = np.random.rand(2).astype('float32')
            data2 = np.random.rand(2).astype('float32')
            np_res = exe.run(feed={'x': data1, 'y': data2}, fetch_list=[result])
            expected_result = np.matmul(
                data1.reshape(1, 2), data2.reshape(2, 1))

        self.assertEqual((np_res == expected_result).all(), True)


class API_TestMmError(unittest.TestCase):
    def test_errors(self):
        def test_error1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(name="data1", shape=[10, 2], dtype="float32")
                data2 = fluid.data(name="data2", shape=[3, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error1)

        def test_error2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(
                    name="data1", shape=[-1, 10, 2], dtype="float32")
                data2 = fluid.data(
                    name="data2", shape=[-1, 2, 10], dtype="float32")
                paddle.mm(data1, data2)

        test_error2()

        def test_error3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(
                    name="data1", shape=[10, 10, 2], dtype="float32")
                data2 = fluid.data(
                    name="data2", shape=[3, 2, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error3)


M
Markus Kliegl 已提交
307 308
if __name__ == "__main__":
    unittest.main()