refactorization.html 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: Refactorization Overview &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/build_cn.html">编译PaddlePaddle和运行单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
157 158 159 160 161 162 163 164
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design Doc: Refactorization Overview</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-refactorization-overview">
<span id="design-doc-refactorization-overview"></span><h1>Design Doc: Refactorization Overview<a class="headerlink" href="#design-doc-refactorization-overview" title="永久链接至标题"></a></h1>
<p>The goal of refactorizaiton include:</p>
<ol class="simple">
<li>Make it easy for external contributors to write new elementory computaiton operations.</li>
<li>Make the codebase clean and readable.</li>
<li>Introduce a new design of computation representation &#8211; a computation graph of operators and variables.</li>
<li>The graph representation helps implementing auto-scalable and auto fault recoverable distributed computing.</li>
</ol>
<div class="section" id="computation-graphs">
<span id="computation-graphs"></span><h2>Computation Graphs<a class="headerlink" href="#computation-graphs" title="永久链接至标题"></a></h2>
<ol class="simple">
<li>PaddlePaddle represent the computation, training and inference of DL models, by computation graphs.</li>
<li>Please dig into <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/graph.md">computation graphs</a> for a solid example.</li>
<li>Users write Python programs to describe the graphs and run it (locally or remotely).</li>
209
<li>A graph is composed of <em>variables</em> and <em>operators</em>.</li>
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
<li>The description of graphs must be able to be serialized/deserialized, so it<ol>
<li>could to be sent to the cloud for distributed execution, and</li>
<li>be sent to clients for mobile or enterprise deployment.</li>
</ol>
</li>
<li>The Python program do<ol>
<li><em>compilation</em>: runs a Python program to generate a protobuf message representation of the graph and send it to<ol>
<li>the C++ library <code class="docutils literal"><span class="pre">libpaddle.so</span></code> for local execution,</li>
<li>the master process of a distributed training job for training, or</li>
<li>the server process of a Kubernetes serving job for distributed serving.</li>
</ol>
</li>
<li><em>execution</em>: according to the protobuf message, constructs instances of class <code class="docutils literal"><span class="pre">Variable</span></code> and <code class="docutils literal"><span class="pre">OperatorBase</span></code>, and run them.</li>
</ol>
</li>
</ol>
</div>
<div class="section" id="description-and-realization">
<span id="description-and-realization"></span><h2>Description and Realization<a class="headerlink" href="#description-and-realization" title="永久链接至标题"></a></h2>
<p>At compile time, the Python program generates protobuf message representation of the graph, or the description of the graph.</p>
<p>At runtime, the C++ program realizes the graph and run it.</p>
<p>| | Representation (protobuf messages) | Realization (C++ class objects) |
|&#8212;|&#8212;|&#8212;|
|Data|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107">VarDesc</a>|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24">Variable</a>|
|Operation|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35">OpDesc</a>|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64">Operator</a>|
|Block|BlockDesc|Block|</p>
<p>The word <em>graph</em> is exchangable with <em>block</em> in this document.  A graph represent computation steps and local variables as a C++/Java program block, or a pair of { and }.</p>
</div>
<div class="section" id="compilation-and-execution">
<span id="compilation-and-execution"></span><h2>Compilation and Execution<a class="headerlink" href="#compilation-and-execution" title="永久链接至标题"></a></h2>
<ol class="simple">
<li>Run an applicaton Python program to describe the graph.  In particular,<ol>
<li>create VarDesc to represent local/intermediate variables,</li>
<li>create operators and set attributes,</li>
<li>validate attribute values,</li>
<li>inference the type and the shape of variables,</li>
<li>plan for memory-reuse for variables,</li>
<li>generate backward and optimization part of the Graph.</li>
<li>possiblly split the graph for distributed training.</li>
</ol>
</li>
<li>The invocation of <code class="docutils literal"><span class="pre">train</span></code> or <code class="docutils literal"><span class="pre">infer</span></code> in the application Python program:<ol>
<li>create a new Scope instance in the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/scope.md">scope hierarchy</a> for each run of a block,<ol>
<li>realize local variables defined in the BlockDesc message in the new scope,</li>
<li>a scope is similar to the stack frame in programming languages,</li>
</ol>
</li>
<li>create an instance of class <code class="docutils literal"><span class="pre">Block</span></code>, in which,<ol>
<li>realize operators in the BlockDesc message,</li>
</ol>
</li>
<li>run the Block by calling<ol>
<li><code class="docutils literal"><span class="pre">Block::Eval(vector&lt;Variable&gt;*</span> <span class="pre">targets)</span></code> for forward and backward computations, or</li>
<li><code class="docutils literal"><span class="pre">Block::Eval(vector&lt;Operator&gt;*</span> <span class="pre">targets)</span></code> for optimization.</li>
</ol>
</li>
</ol>
</li>
</ol>
</div>
<div class="section" id="intermediate-representation-ir">
<span id="intermediate-representation-ir"></span><h2>Intermediate Representation (IR)<a class="headerlink" href="#intermediate-representation-ir" title="永久链接至标题"></a></h2>
<div class="highlight-text"><div class="highlight"><pre><span></span>Compile Time -&gt; IR -&gt; Runtime
</pre></div>
</div>
<div class="section" id="benefit">
<span id="benefit"></span><h3>Benefit<a class="headerlink" href="#benefit" title="永久链接至标题"></a></h3>
<ul>
<li><p class="first">Optimization</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Compile Time -&gt; IR -&gt; Optimized IR -&gt; Runtime
</pre></div>
</div>
</li>
<li><p class="first">Send automatically partitioned IR to different nodes.</p>
<ul>
<li><p class="first">Automatic data parallel</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Compile Time
|-&gt; Single GPU IR
    |-&gt; [trainer-IR-0, trainer-IR-1, pserver-IR]
        |-&gt; Node-0 (runs trainer-IR-0)
        |-&gt; Node-1 (runs trainer-IR-1)
        |-&gt; Node-2 (runs pserver-IR)
</pre></div>
</div>
</li>
<li><p class="first">Automatic model parallel (planned for future)</p>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<hr class="docutils" />
<div class="section" id="operator-opwithkernel-opkernel">
<span id="operator-opwithkernel-opkernel"></span><h1>Operator/OpWithKernel/OpKernel<a class="headerlink" href="#operator-opwithkernel-opkernel" title="永久链接至标题"></a></h1>
<p><img alt="class_diagram" src="http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot" /></p>
</div>
<hr class="docutils" />
<div class="section" id="operator">
<span id="operator"></span><h1>Operator<a class="headerlink" href="#operator" title="永久链接至标题"></a></h1>
<p><img alt="class_diagram" src="http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot" /></p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">Operator</span></code> is the fundamental building block as the user interface.<ul>
<li>Operator stores input/output variable name, and attributes.</li>
<li>The <code class="docutils literal"><span class="pre">InferShape</span></code> interface is used to infer output variable shapes by its input shapes.</li>
<li>Use <code class="docutils literal"><span class="pre">Run</span></code> to compute <code class="docutils literal"><span class="pre">input</span> <span class="pre">variables</span></code> to <code class="docutils literal"><span class="pre">output</span> <span class="pre">variables</span></code>.</li>
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="opwithkernel-kernel">
<span id="opwithkernel-kernel"></span><h1>OpWithKernel/Kernel<a class="headerlink" href="#opwithkernel-kernel" title="永久链接至标题"></a></h1>
<p><img alt="class_diagram" src="http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot" /></p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">OpWithKernel</span></code> inherits <code class="docutils literal"><span class="pre">Operator</span></code>.</li>
<li><code class="docutils literal"><span class="pre">OpWithKernel</span></code> contains a Kernel map.<ul>
<li><code class="docutils literal"><span class="pre">OpWithKernel::Run</span></code> get device&#8217;s kernel, and invoke <code class="docutils literal"><span class="pre">OpKernel::Compute</span></code>.</li>
<li><code class="docutils literal"><span class="pre">OpKernelKey</span></code> is the map key. Only device place now, but may be data type later.</li>
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="why-separate-kernel-and-operator">
<span id="why-separate-kernel-and-operator"></span><h1>Why separate Kernel and Operator<a class="headerlink" href="#why-separate-kernel-and-operator" title="永久链接至标题"></a></h1>
<ul class="simple">
<li>Separate GPU and CPU code.<ul>
<li>Make Paddle can run without GPU.</li>
</ul>
</li>
<li>Make one operator (which is user interface) can contain many implementations.<ul>
<li>Same mul op, different FP16, FP32 Kernel. different MKL, eigen kernel.</li>
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="libraries-for-kernel-development">
<span id="libraries-for-kernel-development"></span><h1>Libraries for Kernel development<a class="headerlink" href="#libraries-for-kernel-development" title="永久链接至标题"></a></h1>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">Eigen::Tensor</span></code> contains basic math and element-wise functions.<ul>
<li>Note that <code class="docutils literal"><span class="pre">Eigen::Tensor</span></code> has broadcast implementation.</li>
<li>Limit number of <code class="docutils literal"><span class="pre">tensor.device(dev)</span> <span class="pre">=</span></code> in your code.</li>
</ul>
</li>
<li><code class="docutils literal"><span class="pre">thrust::tranform</span></code> and <code class="docutils literal"><span class="pre">std::transform</span></code>.<ul>
<li><code class="docutils literal"><span class="pre">thrust</span></code> has the same API as C++ standard library. Using <code class="docutils literal"><span class="pre">transform</span></code> can quickly implement a customized elementwise kernel.</li>
<li><code class="docutils literal"><span class="pre">thrust</span></code> has more complex API, like <code class="docutils literal"><span class="pre">scan</span></code>, <code class="docutils literal"><span class="pre">reduce</span></code>, <code class="docutils literal"><span class="pre">reduce_by_key</span></code>.</li>
</ul>
</li>
<li>Hand-writing <code class="docutils literal"><span class="pre">GPUKernel</span></code> and <code class="docutils literal"><span class="pre">CPU</span></code> code<ul>
363
<li>Do not write <code class="docutils literal"><span class="pre">.h</span></code>. CPU Kernel should be in <code class="docutils literal"><span class="pre">.cc</span></code>. GPU kernel should be in <code class="docutils literal"><span class="pre">.cu</span></code>. (<code class="docutils literal"><span class="pre">GCC</span></code> cannot compile GPU code.)</li>
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="operator-register">
<span id="operator-register"></span><h1>Operator Register<a class="headerlink" href="#operator-register" title="永久链接至标题"></a></h1>
<div class="section" id="why-register-is-necessary">
<span id="why-register-is-necessary"></span><h2>Why register is necessary?<a class="headerlink" href="#why-register-is-necessary" title="永久链接至标题"></a></h2>
<p>We need a method to build mappings between Op type names and Op classes.</p>
</div>
<div class="section" id="how-to-do-the-register">
<span id="how-to-do-the-register"></span><h2>How to do the register?<a class="headerlink" href="#how-to-do-the-register" title="永久链接至标题"></a></h2>
<p>Maintain a map, whose key is the type name and value is corresponding Op constructor.</p>
</div>
</div>
<hr class="docutils" />
<div class="section" id="the-registry-map">
<span id="the-registry-map"></span><h1>The Registry Map<a class="headerlink" href="#the-registry-map" title="永久链接至标题"></a></h1>
<div class="section" id="opinfomap">
<span id="opinfomap"></span><h2><code class="docutils literal"><span class="pre">OpInfoMap</span></code><a class="headerlink" href="#opinfomap" title="永久链接至标题"></a></h2>
<p><code class="docutils literal"><span class="pre">op_type(string)</span></code> -&gt; <code class="docutils literal"><span class="pre">OpInfo</span></code></p>
<p><code class="docutils literal"><span class="pre">OpInfo</span></code>:</p>
<ul class="simple">
<li><strong><code class="docutils literal"><span class="pre">creator</span></code></strong>: The Op constructor.</li>
<li><strong><code class="docutils literal"><span class="pre">grad_op_type</span></code></strong>: The type of the gradient Op.</li>
<li><strong><code class="docutils literal"><span class="pre">proto</span></code></strong>: The Op&#8217;s Protobuf, including inputs, outputs and required attributes.</li>
<li><strong><code class="docutils literal"><span class="pre">checker</span></code></strong>: Used to check attributes.</li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="related-concepts">
<span id="related-concepts"></span><h1>Related Concepts<a class="headerlink" href="#related-concepts" title="永久链接至标题"></a></h1>
<div class="section" id="op-maker">
<span id="op-maker"></span><h2>Op_Maker<a class="headerlink" href="#op-maker" title="永久链接至标题"></a></h2>
<p>It&#8217;s constructor takes <code class="docutils literal"><span class="pre">proto</span></code> and <code class="docutils literal"><span class="pre">checker</span></code>. They are compeleted during Op_Maker&#8217;s construction. (<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37">ScaleOpMaker</a>)</p>
</div>
<div class="section" id="register-macros">
<span id="register-macros"></span><h2>Register Macros<a class="headerlink" href="#register-macros" title="永久链接至标题"></a></h2>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">op_type</span><span class="p">,</span> <span class="n">op_class</span><span class="p">,</span> <span class="n">op_maker_class</span><span class="p">,</span> <span class="n">grad_op_type</span><span class="p">,</span> <span class="n">grad_op_class</span><span class="p">)</span>
<span class="n">REGISTER_OP_WITHOUT_GRADIENT</span><span class="p">(</span><span class="n">op_type</span><span class="p">,</span> <span class="n">op_class</span><span class="p">,</span> <span class="n">op_maker_class</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="use-macros">
<span id="use-macros"></span><h2><code class="docutils literal"><span class="pre">USE</span></code> Macros<a class="headerlink" href="#use-macros" title="永久链接至标题"></a></h2>
<p>make sure the registration process is executed and linked.</p>
</div>
</div>
<hr class="docutils" />
<div class="section" id="register-process">
<span id="register-process"></span><h1>Register Process<a class="headerlink" href="#register-process" title="永久链接至标题"></a></h1>
<ol class="simple">
<li>Write Op class, as well as its gradient Op class if there is.</li>
<li>Write Op maker class. In the constructor, describe its inputs, outputs, and attributes.</li>
<li>Invoke macro <code class="docutils literal"><span class="pre">REGISTER_OP</span></code>. The macro will<ol>
<li>call maker class to complete <code class="docutils literal"><span class="pre">proto</span></code> and <code class="docutils literal"><span class="pre">checker</span></code></li>
<li>with the completed <code class="docutils literal"><span class="pre">proto</span></code> and <code class="docutils literal"><span class="pre">checker</span></code>, build a new key-value pair in the <code class="docutils literal"><span class="pre">OpInfoMap</span></code></li>
</ol>
</li>
<li>Invoke <code class="docutils literal"><span class="pre">USE</span></code> macro in where the Op is used to make sure it is linked.</li>
</ol>
</div>
<hr class="docutils" />
<div class="section" id="backward-module-1-2">
<span id="backward-module-1-2"></span><h1>Backward Module (1/2)<a class="headerlink" href="#backward-module-1-2" title="永久链接至标题"></a></h1>
<div class="section" id="create-backward-operator">
<span id="create-backward-operator"></span><h2>Create Backward Operator<a class="headerlink" href="#create-backward-operator" title="永久链接至标题"></a></h2>
<ul class="simple">
<li>Mapping from forwarding Op to backward Op
<img alt="backward" src="https://gist.githubusercontent.com/dzhwinter/a6fbd4623ee76c459f7f94591fd1abf0/raw/61026ab6e518e66bde66a889bc42557a1fccff33/backward.png" /></li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="backward-module-2-2">
<span id="backward-module-2-2"></span><h1>Backward Module (2/2)<a class="headerlink" href="#backward-module-2-2" title="永久链接至标题"></a></h1>
<div class="section" id="build-backward-network">
<span id="build-backward-network"></span><h2>Build Backward Network<a class="headerlink" href="#build-backward-network" title="永久链接至标题"></a></h2>
<ul class="simple">
<li><strong>Input</strong> graph of forwarding operators</li>
<li><strong>Output</strong> graph of backward operators</li>
<li><strong>corner case in construction</strong><ul>
<li>shared variable =&gt; insert <code class="docutils literal"><span class="pre">Add</span></code> operator</li>
<li>no gradient =&gt; insert <code class="docutils literal"><span class="pre">fill_zero_grad</span></code> operator</li>
<li>recursive netOp =&gt; call <code class="docutils literal"><span class="pre">Backward</span></code> recursively</li>
<li>RNN Op =&gt; recursively call <code class="docutils literal"><span class="pre">Backward</span></code> on stepnet</li>
</ul>
</li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="scope-variable-tensor">
<span id="scope-variable-tensor"></span><h1>Scope, Variable, Tensor<a class="headerlink" href="#scope-variable-tensor" title="永久链接至标题"></a></h1>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">Tensor</span></code> is an n-dimension array with type.<ul>
<li>Only dims and data pointers are stored in <code class="docutils literal"><span class="pre">Tensor</span></code>.</li>
<li>All operators on <code class="docutils literal"><span class="pre">Tensor</span></code> is written in <code class="docutils literal"><span class="pre">Operator</span></code> or global functions.</li>
<li>variable length Tensor design <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md">LoDTensor</a></li>
</ul>
</li>
<li><code class="docutils literal"><span class="pre">Variable</span></code> is the inputs and outputs of an operator. Not just <code class="docutils literal"><span class="pre">Tensor</span></code>.<ul>
<li>step_scopes in RNN is a variable and not a tensor.</li>
</ul>
</li>
<li><code class="docutils literal"><span class="pre">Scope</span></code> is where variables store at.<ul>
<li>map&lt;string/*var name */, Variable&gt;</li>
<li><code class="docutils literal"><span class="pre">Scope</span></code> has a hierarchical structure. The local scope can get variable from its parent scope.</li>
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="block-in-design">
<span id="block-in-design"></span><h1>Block (in design)<a class="headerlink" href="#block-in-design" title="永久链接至标题"></a></h1>
<div class="section" id="the-difference-with-original-rnnop">
<span id="the-difference-with-original-rnnop"></span><h2>the difference with original RNNOp<a class="headerlink" href="#the-difference-with-original-rnnop" title="永久链接至标题"></a></h2>
<ul class="simple">
<li>as an operator is more intuitive than <code class="docutils literal"><span class="pre">RNNOp</span></code>,</li>
<li>offers new interface <code class="docutils literal"><span class="pre">Eval(targets)</span></code> to deduce the minimal block to <code class="docutils literal"><span class="pre">Run</span></code>,</li>
<li>fits the compile-time/ runtime separation design.<ul>
<li>during the compilation, <code class="docutils literal"><span class="pre">SymbolTable</span></code> stores <code class="docutils literal"><span class="pre">VarDesc</span></code>s and <code class="docutils literal"><span class="pre">OpDesc</span></code>s and serialize to a <code class="docutils literal"><span class="pre">BlockDesc</span></code></li>
<li>when graph executes, a Block with <code class="docutils literal"><span class="pre">BlockDesc</span></code> passed in creates <code class="docutils literal"><span class="pre">Op</span></code> and <code class="docutils literal"><span class="pre">Var</span></code> then <code class="docutils literal"><span class="pre">Run</span></code></li>
</ul>
</li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="milestone">
<span id="milestone"></span><h1>Milestone<a class="headerlink" href="#milestone" title="永久链接至标题"></a></h1>
<ul class="simple">
<li>take Paddle/books as the main line, the requirement of the models motivates framework refactoring,</li>
<li>model migration<ul>
<li>framework development gives <strong>priority support</strong> to model migration, for example,<ul>
<li>the MNIST demo needs a Python interface,</li>
<li>the RNN models require the framework to support <code class="docutils literal"><span class="pre">LoDTensor</span></code>.</li>
</ul>
</li>
<li>determine some timelines,</li>
<li>heavily-relied Ops need to be migrated first,</li>
<li>different models can be migrated parallelly.</li>
</ul>
</li>
<li>improve the framework at the same time</li>
<li>accept imperfection, concentrated on solving the specific problem at the right price.</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="control-the-migration-quality">
<span id="control-the-migration-quality"></span><h1>Control the migration quality<a class="headerlink" href="#control-the-migration-quality" title="永久链接至标题"></a></h1>
<ul class="simple">
<li>compare the performance of migrated models with old ones.</li>
<li>follow google C style</li>
<li>build the automatic workflow of generating Python/C++ documentations<ul>
<li>the documentation of layers and ops should be written inside the code</li>
<li>take the documentation quality into account when doing PR</li>
<li>preview the documentations, read and improve them from users&#8217; perspective</li>
</ul>
</li>
</ul>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>