FunctionTest.h 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Function.h"
16 17
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
18 19
#include "paddle/math/Vector.h"
#include "paddle/math/tests/TensorCheck.h"
H
hedaoyuan 已提交
20
#include "paddle/testing/TestUtil.h"
21 22 23

namespace paddle {

H
hedaoyuan 已提交
24 25
typedef std::shared_ptr<BufferArg> BufferArgPtr;

H
hedaoyuan 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/**
 * \brief A class for comparing CPU and GPU implementations of Function.
 *
 *
 * Use case:
 *  // Initializes a test object, the corresponding cpu and gpu Function
 *  // are constructed according to FunctionName and FuncConfig.
 *  FunctionCompare test(FunctionName, FuncConfig);
 *  // Prepare inputs and outputs arguments.
 *  // Here the input and output can not contain real data,
 *  // only contains the argument type and shape.
 *  test.addInputs(input1);
 *  test.addInputs(input2);
 *  test.addOutputs(output1);
 *  test.addOutputs(output2);
 *  // Run.
 *  // Will according to the type and shape of arguments(inputs_/outputs_),
 *  // automatic initialization cpu and gpu function required arguments
 *  // (cpuInputs_/cpuOutputs_/gpuInputs_/gpuOutputs_).
 *  // Call the CPU and GPU Function calculation results.
 *  // Compares CPU and GPU calculation results for consistency.
 *  test.run();
 */
49 50 51
class FunctionCompare {
public:
  FunctionCompare(const std::string& name, const FuncConfig& config)
H
hedaoyuan 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
      : cpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-CPU")),
        gpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-GPU")) {
    cpuFunc_->init(config);
    gpuFunc_->init(config);
  }

  ~FunctionCompare() {}

  // input need only contains shape, do not contains data.
  void addInputs(const BufferArg& input) {
    size_t size =
        input.shape().getElements() * sizeOfValuType(input.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

67 68 69 70 71 72 73 74 75 76 77 78
    cpuInputs_.emplace_back(
        std::make_shared<BufferArg>(cpuMemory_.back()->getBuf(),
                                    input.valueType(),
                                    input.shape(),
                                    UNSPECIFIED,
                                    input.isTransposed()));
    gpuInputs_.emplace_back(
        std::make_shared<BufferArg>(gpuMemory_.back()->getBuf(),
                                    input.valueType(),
                                    input.shape(),
                                    UNSPECIFIED,
                                    input.isTransposed()));
H
hedaoyuan 已提交
79 80 81
  }

  // output need only contains shape, do not contains data.
82
  void addOutputs(const BufferArg& output, ArgType argType = ASSIGN_TO) {
H
hedaoyuan 已提交
83 84 85 86 87
    size_t size =
        output.shape().getElements() * sizeOfValuType(output.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

88 89 90 91 92 93 94 95 96 97 98 99 100 101
    cpuOutputs_.emplace_back(std::make_shared<BufferArg>(
        cpuMemory_.back()->getBuf(),
        output.valueType(),
        output.shape(),
        // todo(tianbing), argType = output.getArgType(), but default ASSIGN_TO
        argType,
        output.isTransposed()));
    gpuOutputs_.emplace_back(std::make_shared<BufferArg>(
        gpuMemory_.back()->getBuf(),
        output.valueType(),
        output.shape(),
        // todo(tianbing), argType = output.getArgType(), but default ASSIGN_TO
        argType,
        output.isTransposed()));
102 103
  }

H
hedaoyuan 已提交
104 105 106 107 108 109 110
  void addInputs(const SequenceArg& input) {
    size_t batchSize = input.shape()[0];
    size_t numSeqs = batchSize / 10 + 1;

    size_t sizeId = (numSeqs + 1) * sizeOfValuType(VALUE_TYPE_INT32);
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(sizeId));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(sizeId));
H
hedaoyuan 已提交
111

H
hedaoyuan 已提交
112 113 114 115 116 117 118 119 120 121 122
    TensorShape seqsId({numSeqs + 1});
    // void* cpuBuffer = cpuMemory_.back()->getBuf();
    // void* gpuBuffer = gpuMemory_.back()->getBuf();

    size_t size =
        input.shape().getElements() * sizeOfValuType(input.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

    // TODO: need be implemented.
  }
H
hedaoyuan 已提交
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  void addInputs(const SparseMatrixArg& input) {
    cpuSparse_ = std::make_shared<CpuSparseMatrix>(input.shape()[0],
                                                   input.shape()[1],
                                                   input.nnz(),
                                                   input.dataType(),
                                                   input.dataFormat(),
                                                   input.isTransposed());

    gpuSparse_ = std::make_shared<GpuSparseMatrix>(input.shape()[0],
                                                   input.shape()[1],
                                                   input.nnz(),
                                                   input.dataType(),
                                                   input.dataFormat(),
                                                   input.isTransposed());

    /// init sparse matrix
    hl_stream_t stream(HPPL_STREAM_1);
    cpuSparse_->randomizeUniform();
    gpuSparse_->copyFrom(*cpuSparse_, stream);
    hl_stream_synchronize(stream);

    cpuInputs_.emplace_back(std::make_shared<SparseMatrixArg>(*cpuSparse_));
    gpuInputs_.emplace_back(std::make_shared<SparseMatrixArg>(*gpuSparse_));
  }

H
hedaoyuan 已提交
149 150
  void run() {
    // prepare cpu/gpu arguments
H
hedaoyuan 已提交
151
    initInputs();
H
hedaoyuan 已提交
152

153
    initOutputs();
H
hedaoyuan 已提交
154
    // function calculate
H
hedaoyuan 已提交
155 156 157 158 159 160 161
    auto callFunction = [](FunctionBase* function,
                           std::vector<BufferArgPtr>& inputs,
                           std::vector<BufferArgPtr>& outputs) {
      BufferArgs inArgs;
      BufferArgs outArgs;
      for (auto arg : inputs) {
        inArgs.addArg(*arg);
H
hedaoyuan 已提交
162
      }
H
hedaoyuan 已提交
163 164
      for (auto arg : outputs) {
        outArgs.addArg(*arg);
165
      }
H
hedaoyuan 已提交
166
      function->calc(inArgs, outArgs);
167 168
    };

H
hedaoyuan 已提交
169 170
    callFunction(cpuFunc_.get(), cpuInputs_, cpuOutputs_);
    callFunction(gpuFunc_.get(), gpuInputs_, gpuOutputs_);
171

172
    // check outputs
H
hedaoyuan 已提交
173
    compareOutputs();
174 175
  }

H
hedaoyuan 已提交
176
  std::shared_ptr<FunctionBase> getCpuFunction() const { return cpuFunc_; }
177

H
hedaoyuan 已提交
178
  std::shared_ptr<FunctionBase> getGpuFunction() const { return gpuFunc_; }
179

H
hedaoyuan 已提交
180
protected:
H
hedaoyuan 已提交
181 182
  void initInputs() {
    for (size_t i = 0; i < cpuInputs_.size(); i++) {
183 184 185 186
      if (cpuInputs_[i]->isSparseArg()) {
        continue;  /// sparse matrix already init
      }

H
hedaoyuan 已提交
187
      initArg(*cpuInputs_[i]);
H
hedaoyuan 已提交
188

H
hedaoyuan 已提交
189 190 191 192 193
      // TODO: Need a BufferCopy used to copy from one BufferArg to another.
      CpuVector cpuVector(cpuInputs_[i]->shape().getElements(),
                          (real*)cpuInputs_[i]->data());
      GpuVector gpuVector(gpuInputs_[i]->shape().getElements(),
                          (real*)gpuInputs_[i]->data());
H
hedaoyuan 已提交
194

H
hedaoyuan 已提交
195 196
      gpuVector.copyFrom(cpuVector);
    }
H
hedaoyuan 已提交
197 198
  }

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  void initOutputs() {
    for (size_t i = 0; i < cpuOutputs_.size(); i++) {
      if (cpuOutputs_[i]->isSparseArg()) {
        LOG(INFO) << "output sparse matrix already init";
        continue;
      }

      initArg(*cpuOutputs_[i]);

      // TODO: Need a BufferCopy used to copy from one BufferArg to another.
      CpuVector cpuVector(cpuOutputs_[i]->shape().getElements(),
                          (real*)cpuOutputs_[i]->data());
      GpuVector gpuVector(gpuOutputs_[i]->shape().getElements(),
                          (real*)gpuOutputs_[i]->data());

      gpuVector.copyFrom(cpuVector);
    }
  }

H
hedaoyuan 已提交
218 219 220 221 222 223 224 225 226
  void compareOutputs() {
    for (size_t i = 0; i < cpuOutputs_.size(); i++) {
      // TODO, Need a BufferCheck used to compare the two buffers.
      auto cpu = cpuOutputs_[i];
      auto gpu = gpuOutputs_[i];
      CpuVector cpuVector(cpu->shape().getElements(), (real*)cpu->data());
      GpuVector gpuVector(cpu->shape().getElements(), (real*)gpu->data());
      autotest::TensorCheckErr(cpuVector, gpuVector);
    }
H
hedaoyuan 已提交
227 228 229 230 231 232 233 234 235 236
  }

  // only init cpu argument, gpu argument copy from cpu argument.
  void initArg(BufferArg& arg) {
    CpuVector vector(arg.shape().getElements(), (real*)arg.data());
    vector.uniform(0.001, 1);
  }

  void initArg(SequenceIdArg& arg, size_t batchSize) {
    size_t numSeqs = arg.numSeqs();
H
hedaoyuan 已提交
237
    int* buf = reinterpret_cast<int*>(arg.data());
H
hedaoyuan 已提交
238 239
    int pos = 0;
    size_t maxLen = 2 * batchSize / numSeqs;
H
hedaoyuan 已提交
240
    for (int i = 0; i < (int)numSeqs; ++i) {
H
hedaoyuan 已提交
241 242 243 244 245 246 247 248 249 250
      int len = uniformRandom(
                    std::min<int64_t>(maxLen, batchSize - pos - numSeqs + i)) +
                1;
      buf[i] = pos;
      pos += len;
      VLOG(1) << " len=" << len;
    }
    buf[numSeqs] = batchSize;
  }

251
protected:
H
hedaoyuan 已提交
252 253
  std::shared_ptr<FunctionBase> cpuFunc_;
  std::shared_ptr<FunctionBase> gpuFunc_;
H
hedaoyuan 已提交
254 255
  std::vector<CpuMemHandlePtr> cpuMemory_;
  std::vector<GpuMemHandlePtr> gpuMemory_;
H
hedaoyuan 已提交
256 257 258 259
  std::vector<BufferArgPtr> cpuInputs_;
  std::vector<BufferArgPtr> cpuOutputs_;
  std::vector<BufferArgPtr> gpuInputs_;
  std::vector<BufferArgPtr> gpuOutputs_;
260 261
  std::shared_ptr<CpuSparseMatrix> cpuSparse_;
  std::shared_ptr<GpuSparseMatrix> gpuSparse_;
262 263 264
};

}  // namespace paddle