trace_op.h 8.8 KB
Newer Older
L
Li Fuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

template <typename T>
struct DiagFunctor {
  DiagFunctor(const T* input, const int64_t* diag_stride,
              const int64_t* ret_strides, int64_t pos, int64_t dim_size,
              T* diag)
      : input_(input),
        diag_stride_(diag_stride),
        ret_strides_(ret_strides),
        pos_(pos),
        dim_size_(dim_size),
        diag_(diag) {}

  HOSTDEVICE void operator()(size_t idx) const {
    int64_t position = pos_;
    int64_t num = idx;
    for (int64_t i = 0; i < dim_size_; i++) {
      position += num / diag_stride_[i] * ret_strides_[i];
      num = num % diag_stride_[i];
    }
    diag_[idx] = input_[position];
  }

  const T* input_;
  const int64_t* diag_stride_;
  const int64_t* ret_strides_;
  int64_t pos_;
  int64_t dim_size_;
  T* diag_;
};

template <typename T>
struct TraceGradFunctor {
  TraceGradFunctor(const T* d_out, const int64_t* out_stride,
                   const int64_t* x_strides, int64_t pos, int64_t dim_size,
                   int64_t dim1, int64_t dim2, int64_t diag_size, T* d_x)
      : d_out_(d_out),
        out_stride_(out_stride),
        x_strides_(x_strides),
        pos_(pos),
        dim_size_(dim_size),
        dim1_(dim1),
        dim2_(dim2),
        diag_size_(diag_size),
        d_x_(d_x) {}

  HOSTDEVICE void operator()(size_t idx) const {
    int64_t num = idx - pos_;
    int64_t position = 0;
    if (num >= 0) {
      int64_t dim1 = 0;
      int64_t dim2 = 0;
      int64_t out_idx = 0;
      for (int64_t i = 0; i < dim_size_; i++) {
        if (i != dim1_ && i != dim2_) {
          position += num / x_strides_[i] * out_stride_[out_idx++];
        } else if (i == dim1_) {
          dim1 = num / x_strides_[i];
        } else {
          dim2 = num / x_strides_[i];
        }
        num = num % x_strides_[i];
      }
      if (dim1 == dim2 && dim1 < diag_size_) {
        d_x_[idx] = d_out_[position];
      }
    }
  }
  const T* d_out_;
  const int64_t* out_stride_;
  const int64_t* x_strides_;
  int64_t pos_;
  int64_t dim_size_;
  int64_t dim1_;
  int64_t dim2_;
  int64_t diag_size_;
  T* d_x_;
};

template <typename DeviceContext, typename T>
framework::Tensor Diagonal(const framework::ExecutionContext& context,
                           const framework::Tensor* input, int64_t offset,
                           int64_t dim1, int64_t dim2) {
  auto* input_data = input->data<T>();
  auto input_dims = input->dims();
  auto input_stride = framework::stride(input_dims);
  auto dim1_ = dim1 < 0 ? input_dims.size() + dim1 : dim1;
  auto dim2_ = dim2 < 0 ? input_dims.size() + dim2 : dim2;
  auto len1 = input_dims[std::min(dim1_, dim2_)];
  auto len2 = input_dims[std::max(dim1_, dim2_)];
  auto stride1 = input_stride[std::min(dim1_, dim2_)];
  auto stride2 = input_stride[std::max(dim1_, dim2_)];

  int offset_stride = 0;
  if (offset >= 0) {
    offset_stride = stride2;
    len2 -= offset;
  } else {
    offset_stride = stride1;
    len1 += offset;
  }
  int diag_size = len2 < len1 ? len2 : len1;

  if (diag_size > 0) {
    auto ret_strides = vectorize(input_stride);
    auto ret_dims = vectorize(input_dims);
    ret_strides.erase(ret_strides.begin() + std::max(dim1_, dim2_));
    ret_strides.erase(ret_strides.begin() + std::min(dim1_, dim2_));
    ret_dims.erase(ret_dims.begin() + std::max(dim1_, dim2_));
    ret_dims.erase(ret_dims.begin() + std::min(dim1_, dim2_));
    if (ret_strides.empty()) {
      ret_strides.push_back(1);
      ret_dims.push_back(1);
    }
    ret_strides.push_back(stride1 + stride2);
    ret_dims.push_back(diag_size);
    framework::Tensor diag;
    framework::DDim diag_dims = framework::make_ddim(ret_dims);
    auto dig_stride = framework::stride(diag_dims);
    auto diag_data = diag.mutable_data<T>(diag_dims, context.GetPlace());

    int64_t pos = std::abs(offset) * offset_stride;
    int64_t dim_size = ret_strides.size();
#ifdef __NVCC__
    thrust::device_vector<int64_t> diag_vec(vectorize(dig_stride));
    const int64_t* diag_arr = thrust::raw_pointer_cast(diag_vec.data());
    thrust::device_vector<int64_t> ret_vec(ret_strides);
    const int64_t* ret_arr = thrust::raw_pointer_cast(ret_vec.data());
#else
    auto* diag_arr = dig_stride.Get();
    const auto* ret_arr = ret_strides.data();
#endif

    auto& dev_ctx = context.template device_context<DeviceContext>();
    platform::ForRange<DeviceContext> for_range(dev_ctx, diag.numel());
    DiagFunctor<T> functor(input_data, diag_arr, ret_arr, pos, dim_size,
                           diag_data);
    for_range(functor);
    return diag;
  } else {
    return {};
  }
}

template <typename DeviceContext, typename T>
class TraceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* input = context.Input<framework::Tensor>("Input");
    auto* out = context.Output<framework::Tensor>("Out");

    const int64_t offset = context.Attr<int>("offset");
    const int64_t dim1 = context.Attr<int>("dim1");
    const int64_t dim2 = context.Attr<int>("dim2");

    auto output_dims = out->dims();

    out->mutable_data<T>(context.GetPlace());

    const framework::Tensor diag =
        Diagonal<DeviceContext, T>(context, input, offset, dim1, dim2);
    if (diag.numel() > 0) {
      auto x = framework::EigenMatrix<T>::Reshape(diag, diag.dims().size() - 1);
      auto output = framework::EigenVector<T>::Flatten(*out);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({1});
      output.device(place) = x.sum(reduce_dim);
      out->Resize(output_dims);
    }
  }
};

template <typename DeviceContext, typename T>
class TraceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));

    int64_t offset = context.Attr<int>("offset");
    int64_t dim1 = context.Attr<int>("dim1");
    int64_t dim2 = context.Attr<int>("dim2");

    auto input_dims = d_x->dims();
    auto input_stride = framework::stride(input_dims);
    auto output_dims = d_out->dims();
    auto output_stride = framework::stride(output_dims);

    auto* out_data = d_out->data<T>();
    T* x_data = d_x->mutable_data<T>(context.GetPlace());

    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    set_zero(dev_ctx, d_x, static_cast<T>(0.0));

    auto dim1_ = dim1 < 0 ? input_dims.size() + dim1 : dim1;
    auto dim2_ = dim2 < 0 ? input_dims.size() + dim2 : dim2;
    auto len1 = input_dims[std::min(dim1_, dim2_)];
    auto len2 = input_dims[std::max(dim1_, dim2_)];
    auto stride1 = input_stride[std::min(dim1_, dim2_)];
    auto stride2 = input_stride[std::max(dim1_, dim2_)];

    int offset_stride = 0;
    if (offset >= 0) {
      offset_stride = stride2;
      len2 -= offset;
    } else {
      offset_stride = stride1;
      len1 += offset;
    }
    int64_t diag_size = len2 < len1 ? len2 : len1;
    int64_t pos = std::abs(offset) * offset_stride;
    if (diag_size > 0) {
#ifdef __NVCC__
      thrust::device_vector<int64_t> output_vec(vectorize(output_stride));
      const int64_t* output_arr = thrust::raw_pointer_cast(output_vec.data());
      thrust::device_vector<int64_t> input_vec(vectorize(input_stride));
      const int64_t* input_arr = thrust::raw_pointer_cast(input_vec.data());

#else
      const auto* output_arr = output_stride.Get();
      const auto* input_arr = input_stride.Get();
#endif

      platform::ForRange<DeviceContext> for_range(dev_ctx, d_x->numel());
      TraceGradFunctor<T> functor(out_data, output_arr, input_arr, pos,
                                  input_dims.size(), dim1_, dim2_, diag_size,
                                  x_data);
      for_range(functor);
    }
  }
};

}  // namespace operators
}  // namespace paddle