analysis_predictor.cc 34.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <string>
21
#include <utility>
22
#include <vector>
23
#include "paddle/fluid/framework/feed_fetch_method.h"
24
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
26
#include "paddle/fluid/framework/ir/pass.h"
27
#include "paddle/fluid/framework/naive_executor.h"
28
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/framework/var_type_traits.h"
30
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
32
#include "paddle/fluid/inference/api/helper.h"
33
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
36
#include "paddle/fluid/memory/memcpy.h"
37
#include "paddle/fluid/platform/cpu_helper.h"
38
#include "paddle/fluid/platform/gpu_info.h"
39
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
40 41
#include "paddle/fluid/platform/profiler.h"

42 43 44 45
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
46 47
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
48
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
49 50
#endif

N
nhzlx 已提交
51
#if PADDLE_WITH_ANAKIN
52
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
N
nhzlx 已提交
53
#endif
54

T
tensor-tang 已提交
55
DECLARE_bool(profile);
56 57 58

namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
78
bool AnalysisPredictor::Init(
79 80
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
81
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
82 83 84
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
85 86
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
87 88 89
    platform::EnableProfiler(tracking_device);
  }

90
  // no matter with or without MKLDNN
L
luotao1 已提交
91
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
92

93 94 95 96 97 98 99 100 101 102 103 104 105
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
106
  }
107 108 109 110 111 112 113 114 115

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
116
  if (parent_scope) {
117 118 119
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
120
    scope_ = parent_scope;
121
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
122
  } else {
Z
Zhaolong Xing 已提交
123 124 125 126 127
    if (config_.use_gpu_) {
      paddle::framework::InitDevices(false, {config_.device_id_});
    } else {
      paddle::framework::InitDevices(false, {});
    }
Y
Yan Chunwei 已提交
128
    scope_.reset(new paddle::framework::Scope());
129
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
130
  }
131 132 133 134 135
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
136 137
  if (!program) {
    if (!LoadProgramDesc()) return false;
138

139 140 141 142 143 144 145 146 147
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

148 149 150
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
151
    if (config_.ir_optim()) {
152 153 154 155 156 157 158
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
159
  } else {
160 161
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
162 163
    inference_program_ = program;
  }
M
Michal Gallus 已提交
164

165 166 167 168 169
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
170
  if (config_.use_gpu_) {
171
    status_use_gpu_ = true;
172
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
173 174 175 176 177 178 179 180
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
181
                     config_.use_feed_fetch_ops_);
182

183
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
184

185 186 187
  return true;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::Run get_cur_mkldnn_session_id="
          << platform::get_cur_mkldnn_session_id();
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
    platform::set_cur_mkldnn_session_id(
        platform::kMKLDNNSessionID_CacheClearing);
    platform::set_cur_input_shape_cache_capacity(
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
    for (size_t i = 0; i < inputs.size(); ++i) {
      for (size_t j = 0; j < inputs[i].shape.size(); ++j) {
        ss << inputs[i].shape[j] << "-";
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
    platform::set_cur_input_shape_str(ss.str());
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    paddle::platform::set_cur_mkldnn_session_id(
        platform::kMKLDNNSessionID_Default);
    platform::set_cur_input_shape_cache_capacity(0);
    platform::set_cur_input_shape_str("");
  }
#endif
}

224 225 226
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
227
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
228 229 230
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
231
  VLOG(3) << "Predictor::predict";
232 233 234 235
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
236
  PADDLE_ENFORCE_NOT_NULL(scope, "The scope should not be nullptr.");
237 238
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
239
    return false;
240
  }
M
Michal Gallus 已提交
241

242 243 244
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
245

246 247 248 249
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
250
  }
Y
Yan Chunwei 已提交
251 252 253 254 255 256

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
257
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
258

Y
Yan Chunwei 已提交
259 260 261 262 263
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
264 265 266
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
267
  tensor_array_batch_cleaner_.ResetNoTensorVars();
268 269 270 271

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
272 273 274
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
275 276
  return true;
}
277

278 279
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
280
  VLOG(3) << "Predictor::set_feed";
281 282 283 284 285 286 287 288 289 290 291 292 293 294
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
295
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
296
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
297
      input_ptr = input.mutable_data<float>(ddim, place_);
298 299
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
300 301 302 303 304
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

L
liuwei1031 已提交
305 306 307
    PADDLE_ENFORCE_NOT_NULL(input_ptr);
    PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());

308 309 310 311 312 313
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
314 315 316 317
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
318 319 320
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
321
                   inputs[i].data.length(), dev_ctx->stream());
322 323 324 325
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
326 327 328 329 330 331 332
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
333
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
334 335
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
336 337
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
338 339
      }
      idx = feed_names_[name];
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
370
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
371 372 373
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
374 375 376 377 378
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
379
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
380
    if (type == framework::proto::VarType::FP32) {
381 382
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
383
    } else if (type == framework::proto::VarType::INT64) {
384 385
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
386 387 388
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
389
    } else {
390
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
391 392
    }
  }
Y
Yan Chunwei 已提交
393 394
  return true;
}
395

396
void AnalysisPredictor::PrepareArgument() {
397 398
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
399
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
400 401 402
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
403
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
404
  // Analyze inference_program
405 406
  argument_.SetUseAnakin(config_.anakin_engine_enabled());
  argument_.SetPredictorID(predictor_id_);
407
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
408 409
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
410 411
  } else {
    PADDLE_ENFORCE(
412
        !config_.params_file().empty(),
T
Tao Luo 已提交
413
        "Either model_dir or (param_file, prog_file) should be set.");
414
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
415
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
416

417 418
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
419
  }
420

421
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
422
    LOG(INFO) << "TensorRT subgraph engine is enabled";
423 424 425
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
426
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
427
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
428
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
429
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
W
Wojciech Uss 已提交
430
  }
431

432
  if (config_.anakin_engine_enabled()) {
433
    argument_.SetAnakinMaxBatchSize(config_.anakin_max_batchsize_);
434
    argument_.SetAnakinMaxInputShape(config_.anakin_max_input_shape_);
435
    argument_.SetAnakinMinSubgraphSize(config_.anakin_min_subgraph_size_);
436 437 438 439
    argument_.SetAnakinPrecisionMode(config_.anakin_precision_mode_);
    argument_.SetAnakinAutoConfigLayout(config_.anakin_auto_config_layout_);
    argument_.SetAnakinPassesFilter(config_.anakin_passes_filter_);
    argument_.SetAnakinOpsFilter(config_.anakin_ops_filter_);
440 441 442
    LOG(INFO) << "Anakin subgraph engine is enabled";
  }

443
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
444
    LOG(INFO) << "MKLDNN is enabled";
445 446 447
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

448 449 450 451 452 453 454 455 456 457
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
#endif

458
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
459 460 461 462
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
463
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
464
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
465
  argument_.SetScopeNotOwned(scope_.get());
466 467 468 469 470 471 472
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  status_program_optimized_ = true;

  PrepareArgument();
473 474 475 476 477
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
478
  inference_program_.reset(
479
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
480 481 482 483
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
484
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
485
}
486 487

template <>
488 489
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
490
  VLOG(3) << "create AnalysisConfig";
491 492
  PADDLE_ENFORCE(config.is_valid(),
                 "Note: Each config can only be used for one predictor.");
493
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
494
    // 1. GPU memory
495
    PADDLE_ENFORCE_GE(config.memory_pool_init_size_mb(), 0.f);
496 497
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
498
    std::vector<std::string> flags;
499 500 501 502 503 504 505 506 507 508 509

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
510 511
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
512
                         std::to_string(fraction_of_gpu_memory);
513
      flags.push_back(flag);
Z
Zhaolong Xing 已提交
514 515
      flags.push_back("--selected_gpus=" +
                      std::to_string(config.gpu_device_id()));
M
minqiyang 已提交
516
      VLOG(3) << "set flag: " << flag;
517 518 519 520 521
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
522 523
  // Each config can only be used for one predictor.
  config.SetInValid();
524 525 526 527 528 529 530
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
531 532
    return nullptr;
  }
533

G
Gabor Buella 已提交
534
  return predictor;
535 536
}

537 538 539 540 541 542 543 544 545 546 547 548
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

549
void AnalysisPredictor::PrepareFeedFetch() {
550 551
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
552 553 554 555 556 557 558 559
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
560
      idx2feeds_[idx] = op->Output("Out")[0];
561 562
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
563 564
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
565
      }
Y
Yan Chunwei 已提交
566
      fetches_[idx] = op;
N
nhzlx 已提交
567
      idx2fetches_[idx] = op->Input("X")[0];
568 569 570 571
    }
  }
}

572 573 574 575 576 577 578 579
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

596 597 598 599 600 601 602
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
603 604 605 606 607 608 609
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

610 611 612 613 614 615 616 617 618 619
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
620 621 622 623 624 625
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
626 627 628 629
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
630
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
631
  executor_->Run();
Y
Yan Chunwei 已提交
632
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
633
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
634
  tensor_array_batch_cleaner_.ResetTensorArray();
635 636 637 638

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
639 640 641 642 643
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
644
  std::string filename;
645 646 647
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
648 649 650
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
651
    filename = config_.prog_file();
652
  } else {
653
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
654 655 656 657
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
658
    LOG(ERROR) << string::Sprintf(
659 660
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
661 662
    return false;
  }
663 664 665

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
666
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
667 668 669
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
670 671
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
672 673 674 675 676 677 678 679
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
680
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
681
  }
682 683 684 685 686 687 688
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
689

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

710
      if (!config_.params_file().empty()) {
711 712 713 714 715 716
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
717
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
718 719 720 721 722
        op->CheckAttrs();
      }
    }
  }

723
  if (!config_.params_file().empty()) {
724 725 726 727 728 729
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
730
    op->SetAttr("file_path", {config_.params_file()});
731 732 733 734
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
735
  framework::NaiveExecutor e(place_);
736 737 738 739
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

740 741
  return true;
}
742

N
nhzlx 已提交
743
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
744 745 746 747 748 749 750 751
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
752
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
753 754 755 756
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
757 758
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
759
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
760
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
761 762
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
763 764 765
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
766

N
nhzlx 已提交
767
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
768 769 770
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
771

N
nhzlx 已提交
772 773 774 775 776
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
777
      std::string calibration_table_data_path =
N
nhzlx 已提交
778 779 780 781
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
782 783 784 785 786

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
787 788 789 790
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
791
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
792 793
  return true;
}
N
nhzlx 已提交
794
#endif
N
nhzlx 已提交
795

796
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
797
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
798
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
799 800
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
801 802
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
803
#endif
804 805 806 807 808 809 810
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
811

812 813 814 815 816 817 818
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif

Y
Yan Chunwei 已提交
819 820 821 822 823 824
  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
825 826
}

827
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
828
  std::lock_guard<std::mutex> lk(clone_mutex_);
829 830 831 832 833
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
881
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
882 883 884
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
885 886
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
887 888 889 890 891 892 893
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

894
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
895 896 897
  return inference_program_->Proto()->SerializeAsString();
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
937
template <>
938 939 940 941
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
942 943
}

944
}  // namespace paddle
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
967
USE_TRT_CONVERTER(split);
968 969
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
970
USE_TRT_CONVERTER(leaky_relu);
971
#endif
972

N
nhzlx 已提交
973
#if PADDLE_WITH_ANAKIN
974
USE_ANAKIN_CONVERTER(mul);
975 976
USE_ANAKIN_CONVERTER(fc);
USE_ANAKIN_CONVERTER(conv2d);
977
USE_ANAKIN_CONVERTER(conv2d_fusion);
978 979 980 981 982 983 984
USE_ANAKIN_CONVERTER(concat);
USE_ANAKIN_CONVERTER(split);
USE_ANAKIN_CONVERTER(relu);
USE_ANAKIN_CONVERTER(sigmoid);
USE_ANAKIN_CONVERTER(tanh);
USE_ANAKIN_CONVERTER(pool2d);
USE_ANAKIN_CONVERTER(elementwise_add);
985
USE_ANAKIN_CONVERTER(elementwise_mul);
986 987 988 989 990 991 992
USE_ANAKIN_CONVERTER(batch_norm);
USE_ANAKIN_CONVERTER(flatten);
USE_ANAKIN_CONVERTER(reshape);
USE_ANAKIN_CONVERTER(transpose);
USE_ANAKIN_CONVERTER(softmax);
USE_ANAKIN_CONVERTER(detection_out);
USE_ANAKIN_CONVERTER(density_prior_box);
993 994
USE_ANAKIN_CONVERTER(dropout);
USE_ANAKIN_CONVERTER(sum);
N
nhzlx 已提交
995
USE_ANAKIN_CONVERTER(prior_box);
996 997 998 999 1000
USE_ANAKIN_CONVERTER(leaky_relu);
USE_ANAKIN_CONVERTER(affine_channel);
USE_ANAKIN_CONVERTER(relu6);
USE_ANAKIN_CONVERTER(swish);
USE_ANAKIN_CONVERTER(shuffle_channel);
N
nhzlx 已提交
1001
#endif