rnn.py 157.9 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
G
Guo Sheng 已提交
16
from functools import partial, reduce
J
Jiaqi Liu 已提交
17
import warnings
G
Guo Sheng 已提交
18

19

20
import paddle
21
from paddle.utils import deprecated
G
Guo Sheng 已提交
22 23 24 25
from . import nn
from . import tensor
from . import control_flow
from . import utils
26
from . import sequence_lod
G
Guo Sheng 已提交
27
from .utils import *
weixin_46829950's avatar
weixin_46829950 已提交
28
from .. import core
29 30
from ..framework import default_main_program
from ..data_feeder import convert_dtype
31
from ..layer_helper import LayerHelper
J
Jiabin Yang 已提交
32
from ..framework import _non_static_mode
33
from ..param_attr import ParamAttr
X
Xing Wu 已提交
34
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
35

36
from collections.abc import Sequence
G
Guo Sheng 已提交
37 38 39 40 41 42 43 44

__all__ = [
    'RNNCell',
    'GRUCell',
    'LSTMCell',
    'Decoder',
    'BeamSearchDecoder',
    'rnn',
F
Feiyu Chan 已提交
45
    'birnn',
G
Guo Sheng 已提交
46
    'dynamic_decode',
47 48 49 50 51
    'DecodeHelper',
    'TrainingHelper',
    'GreedyEmbeddingHelper',
    'SampleEmbeddingHelper',
    'BasicDecoder',
52 53 54 55 56 57 58 59
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'lstm_unit',
    'lstm',
    'beam_search',
    'beam_search_decode',
G
Guo Sheng 已提交
60 61 62
]


63
class RNNCell:
G
Guo Sheng 已提交
64
    """
65
        :api_attr: Static Graph
S
swtkiwi 已提交
66

G
Guo Sheng 已提交
67 68 69 70 71 72
    RNNCell is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

    def call(self, inputs, states, **kwargs):
73
        r"""
G
Guo Sheng 已提交
74 75 76 77 78 79 80 81 82 83
        Every cell must implement this method to do the calculations mapping the
        inputs and states to the output and new states.

        To be more flexible, both inputs and states can be a tensor variable or
        a nested structure (list|tuple|namedtuple|dict) of tensor variable, that
        is, a (possibly nested structure of) tensor variable[s].

        Parameters:
            inputs: A (possibly nested structure of) tensor variable[s].
            states: A (possibly nested structure of) tensor variable[s].
84 85
            **kwargs: Additional keyword arguments, provided by the caller.

G
Guo Sheng 已提交
86 87 88 89 90 91 92 93 94 95 96
        Returns:
            tuple: outputs and new_states pair. outputs and new_states both \
                can be nested structure of tensor variables. new_states must \
                have the same structure with states.

        """
        raise NotImplementedError("RNNCell must implent the call function.")

    def __call__(self, inputs, states, **kwargs):
        return self.call(inputs, states, **kwargs)

97 98 99 100 101 102 103 104
    def get_initial_states(
        self,
        batch_ref,
        shape=None,
        dtype='float32',
        init_value=0,
        batch_dim_idx=0,
    ):
105
        r"""
G
Guo Sheng 已提交
106 107 108 109 110 111 112
        Generate initialized states according to provided shape, data type and
        value.

        Parameters:
            batch_ref: A (possibly nested structure of) tensor variable[s].
                The first dimension of the tensor will be used as batch size to
                initialize states.
T
tianshuo78520a 已提交
113
            shape: A (possibly nested structure of) shape[s], where a shape is
G
Guo Sheng 已提交
114 115 116
                represented as a list/tuple of integer). -1(for batch size) will
                beautomatically inserted if shape is not started with it. If None,
                property `state_shape` will be used. The default value is None.
T
tianshuo78520a 已提交
117
            dtype: A (possibly nested structure of) data type[s]. The structure
G
Guo Sheng 已提交
118
                must be same as that of `shape`, except when all tensors' in states
X
Xing Wu 已提交
119
                has the same data type, a single data type can be used. If
G
Guo Sheng 已提交
120
                property `cell.state_shape` is not available, float32 will be used
X
Xing Wu 已提交
121
                as the data type. The default value is float32.
G
Guo Sheng 已提交
122
            init_value: A float value used to initialize states.
123 124
            batch_dim_idx: An integer indicating which dimension of the tensor in
                inputs represents batch size.  The default value is 0.
125

G
Guo Sheng 已提交
126 127 128 129
        Returns:
            Variable: tensor variable[s] packed in the same structure provided \
                by shape, representing the initialized states.
        """
130 131 132 133 134 135
        check_variable_and_dtype(
            batch_ref,
            'batch_ref',
            ['float32', 'float64', 'int32', 'int64'],
            'RNNCell',
        )
136
        check_type(shape, 'shape', (list, tuple, type(None), int), 'RNNCell')
X
Xing Wu 已提交
137 138 139 140
        if isinstance(shape, (list, tuple)):
            shapes = map_structure(lambda x: x, shape)
            if isinstance(shape, list):
                for i, _shape in enumerate(shapes):
141
                    check_type(_shape, 'shapes[' + str(i) + ']', int, 'RNNCell')
X
Xing Wu 已提交
142
            else:
143
                check_type(shapes, 'shapes', int, 'RNNCell')
X
Xing Wu 已提交
144 145
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'RNNCell')

G
Guo Sheng 已提交
146 147 148 149 150
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
151 152 153 154
            if isinstance(seq, list) or isinstance(seq, tuple):
                if reduce(
                    lambda flag, x: isinstance(x, int) and flag, seq, True
                ):
G
Guo Sheng 已提交
155 156 157 158
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
159
            return isinstance(seq, Sequence) and not isinstance(seq, str)
G
Guo Sheng 已提交
160

161
        class Shape:
G
Guo Sheng 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:  # use fp32 as default
            states_dtypes = "float32"
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
            lambda shape, dtype: tensor.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
186
                value=init_value,
187 188 189 190 191
                input_dim_idx=batch_dim_idx,
            ),
            states_shapes,
            states_dtypes,
        )
G
Guo Sheng 已提交
192 193 194 195 196
        return init_states

    @property
    def state_shape(self):
        """
197
        Abstract method (property).
G
Guo Sheng 已提交
198
        Used to initialize states.
T
tianshuo78520a 已提交
199
        A (possibly nested structure of) shape[s], where a shape is represented
G
Guo Sheng 已提交
200
        as a list/tuple of integers (-1 for batch size would be automatically
201
        inserted into a shape if shape is not started with it).
G
Guo Sheng 已提交
202 203 204 205
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
206
        raise NotImplementedError(
207 208
            "Please add implementaion for `state_shape` in the used cell."
        )
G
Guo Sheng 已提交
209 210 211 212

    @property
    def state_dtype(self):
        """
213
        Abstract method (property).
G
Guo Sheng 已提交
214
        Used to initialize states.
T
tianshuo78520a 已提交
215
        A (possibly nested structure of) data types[s]. The structure must be
G
Guo Sheng 已提交
216
        same as that of `shape`, except when all tensors' in states has the same
T
tianshuo78520a 已提交
217
        data type, a single data type can be used.
G
Guo Sheng 已提交
218 219 220 221
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
222
        raise NotImplementedError(
223 224
            "Please add implementaion for `state_dtype` in the used cell."
        )
G
Guo Sheng 已提交
225 226 227


class GRUCell(RNNCell):
228
    r"""
229
        :api_attr: Static Graph
S
swtkiwi 已提交
230

231
    Gated Recurrent Unit cell. It is a wrapper for
G
Guo Sheng 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    `fluid.contrib.layers.rnn_impl.BasicGRUUnit` to make it adapt to RNNCell.

    The formula used is as follow:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

    For more details, please refer to  `Learning Phrase Representations using
    RNN Encoder Decoder for Statistical Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            cell = layers.GRUCell(hidden_size=256)
    """

257 258 259 260 261 262 263 264 265 266
    def __init__(
        self,
        hidden_size,
        param_attr=None,
        bias_attr=None,
        gate_activation=None,
        activation=None,
        dtype="float32",
        name="GRUCell",
    ):
G
Guo Sheng 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        """
        Constructor of GRUCell.

        Parameters:
            hidden_size (int): The hidden size in the GRU cell.
            param_attr(ParamAttr, optional): The parameter attribute for the learnable
                weight matrix. Default: None.
            bias_attr (ParamAttr, optional): The parameter attribute for the bias
                of GRU. Default: None.
            gate_activation (function, optional): The activation function for :math:`act_g`.
                Default: `fluid.layers.sigmoid`.
            activation (function, optional): The activation function for :math:`act_c`.
                Default: `fluid.layers.tanh`.
            dtype(string, optional): The data type used in this cell. Default float32.
            name(string, optional) : The name scope used to identify parameters and biases.
        """
X
Xing Wu 已提交
283 284
        check_type(hidden_size, 'hidden_size', (int), 'GRUCell')
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'GRUCell')
G
Guo Sheng 已提交
285 286
        self.hidden_size = hidden_size
        from .. import contrib  # TODO: resolve recurrent import
287

G
Guo Sheng 已提交
288
        self.gru_unit = contrib.layers.rnn_impl.BasicGRUUnit(
289 290 291 292 293 294 295 296
            name,
            hidden_size,
            param_attr,
            bias_attr,
            gate_activation,
            activation,
            dtype,
        )
G
Guo Sheng 已提交
297 298

    def call(self, inputs, states):
299
        r"""
G
Guo Sheng 已提交
300 301 302 303 304
        Perform calculations of GRU.

        Parameters:
            inputs(Variable): A tensor with shape `[batch_size, input_size]`,
                corresponding to :math:`x_t` in the formula. The data type
X
Xing Wu 已提交
305
                should be float32 or float64.
G
Guo Sheng 已提交
306 307
            states(Variable): A tensor with shape `[batch_size, hidden_size]`.
                corresponding to :math:`h_{t-1}` in the formula. The data type
X
Xing Wu 已提交
308
                should be float32 or float64.
G
Guo Sheng 已提交
309 310 311 312 313

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` and \
                `new_states` is the same tensor shaped `[batch_size, hidden_size]`, \
                corresponding to :math:`h_t` in the formula. The data type of the \
314
                tensor is same as that of `states`.
G
Guo Sheng 已提交
315
        """
X
Xing Wu 已提交
316

317 318 319 320 321 322
        check_variable_and_dtype(
            inputs, 'inputs', ['float32', 'float64'], 'GRUCell'
        )
        check_variable_and_dtype(
            states, 'states', ['float32', 'float64'], 'GRUCell'
        )
G
Guo Sheng 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336
        new_hidden = self.gru_unit(inputs, states)
        return new_hidden, new_hidden

    @property
    def state_shape(self):
        """
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to :math:`h_{t-1}`.
        """
        return [self.hidden_size]


class LSTMCell(RNNCell):
337
    r"""
338
        :api_attr: Static Graph
S
swtkiwi 已提交
339

340
    Long-Short Term Memory cell. It is a wrapper for
G
Guo Sheng 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    `fluid.contrib.layers.rnn_impl.BasicLSTMUnit` to make it adapt to RNNCell.

    The formula used is as follow:

    .. math::

        i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} act_c (c_{t})
356

G
Guo Sheng 已提交
357 358 359 360 361 362 363 364 365 366
    For more details, please refer to `RECURRENT NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            cell = layers.LSTMCell(hidden_size=256)
    """

367 368 369 370 371 372 373 374 375 376 377
    def __init__(
        self,
        hidden_size,
        param_attr=None,
        bias_attr=None,
        gate_activation=None,
        activation=None,
        forget_bias=1.0,
        dtype="float32",
        name="LSTMCell",
    ):
G
Guo Sheng 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        """
        Constructor of LSTMCell.

        Parameters:
            hidden_size (int): The hidden size in the LSTM cell.
            param_attr(ParamAttr, optional): The parameter attribute for the learnable
                weight matrix. Default: None.
            bias_attr (ParamAttr, optional): The parameter attribute for the bias
                of LSTM. Default: None.
            gate_activation (function, optional): The activation function for :math:`act_g`.
                Default: 'fluid.layers.sigmoid'.
            activation (function, optional): The activation function for :math:`act_h`.
                Default: 'fluid.layers.tanh'.
            forget_bias(float, optional): forget bias used when computing forget gate.
                Default 1.0
            dtype(string, optional): The data type used in this cell. Default float32.
            name(string, optional) : The name scope used to identify parameters and biases.
        """
X
Xing Wu 已提交
396 397 398

        check_type(hidden_size, 'hidden_size', (int), 'LSTMCell')
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'LSTMCell')
G
Guo Sheng 已提交
399 400
        self.hidden_size = hidden_size
        from .. import contrib  # TODO: resolve recurrent import
401

G
Guo Sheng 已提交
402
        self.lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit(
403 404 405 406 407 408 409 410 411
            name,
            hidden_size,
            param_attr,
            bias_attr,
            gate_activation,
            activation,
            forget_bias,
            dtype,
        )
G
Guo Sheng 已提交
412 413

    def call(self, inputs, states):
414
        r"""
G
Guo Sheng 已提交
415 416 417 418 419
        Perform calculations of LSTM.

        Parameters:
            inputs(Variable): A tensor with shape `[batch_size, input_size]`,
                corresponding to :math:`x_t` in the formula. The data type
X
Xing Wu 已提交
420
                should be float32 or float64.
T
tianshuo78520a 已提交
421
            states(Variable): A list of containing two tensors, each shaped
G
Guo Sheng 已提交
422
                `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}, c_{t-1}`
X
Xing Wu 已提交
423
                in the formula. The data type should be float32 or float64.
G
Guo Sheng 已提交
424 425 426 427 428 429 430 431 432

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \
                a tensor with shape `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}` in the formula; `new_states` is a list containing \
                two tenser variables shaped `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}, c_{t}` in the formula. The data type of these \
                tensors all is same as that of `states`.
        """
X
Xing Wu 已提交
433

434 435 436
        check_variable_and_dtype(
            inputs, 'inputs', ['float32', 'float64'], 'LSTMCell'
        )
X
Xing Wu 已提交
437 438 439
        check_type(states, 'states', list, 'LSTMCell')
        if isinstance(states, list):
            for i, state in enumerate(states):
440 441 442 443 444 445
                check_variable_and_dtype(
                    state,
                    'state[' + str(i) + ']',
                    ['float32', 'float64'],
                    'LSTMCell',
                )
X
Xing Wu 已提交
446

G
Guo Sheng 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460
        pre_hidden, pre_cell = states
        new_hidden, new_cell = self.lstm_unit(inputs, pre_hidden, pre_cell)
        return new_hidden, [new_hidden, new_cell]

    @property
    def state_shape(self):
        """
        The `state_shape` of LSTMCell is a list with two shapes: `[[hidden_size], [hidden_size]]`
        (-1 for batch size would be automatically inserted into shape). These two
        shapes correspond to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
        return [[self.hidden_size], [self.hidden_size]]


461 462 463 464 465 466 467 468 469
def rnn(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
G
Guo Sheng 已提交
470 471
    """
    rnn creates a recurrent neural network specified by RNNCell `cell`,
472
    which performs :code:`cell.call()` (for dygraph mode :code:`cell.forward`)
F
Feiyu Chan 已提交
473 474 475 476
    repeatedly until reaches to the maximum length of `inputs`.

    Arguments:
        cell(RNNCellBase): An instance of `RNNCellBase`.
477 478
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
F
Feiyu Chan 已提交
479 480
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
481 482
        initial_states(Tensor|tuple|list, optional): the initial state of the
            rnn cell. Tensor or a possibly nested structure of tensors. If not
F
Feiyu Chan 已提交
483 484
            provided, `cell.get_initial_states` would be called to produce
            the initial state. Defaults to None.
485
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
F
Feiyu Chan 已提交
486
            or int32. The valid lengths of input sequences. Defaults to None.
487 488
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
F
Feiyu Chan 已提交
489 490 491 492 493
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
494
        **kwargs: Additional keyword arguments to pass to `forward` of the cell.
G
Guo Sheng 已提交
495 496

    Returns:
F
Feiyu Chan 已提交
497
        (outputs, final_states)
498
        outputs (Tensor|list|tuple): the output sequence. Tensor or nested
F
Feiyu Chan 已提交
499
            structure of Tensors.
500 501
            If `time_major` is True, the shape of each tensor in outpus is
            `[time_steps, batch_size, hidden_size]`, else
F
Feiyu Chan 已提交
502 503
            `[batch_size, time_steps, hidden_size]`.
        final_states (Tensor|list|tuple): final states. A (possibly nested structure of)
504
            tensor[s], representing the final state for RNN. It has the same
F
Feiyu Chan 已提交
505 506
            structure of intial state. Each tensor in final states has the same
            shape and dtype as the corresponding tensor in initial states.
507

G
Guo Sheng 已提交
508 509 510 511 512

    Examples:

        .. code-block:: python

F
Feiyu Chan 已提交
513 514 515 516 517 518 519
            import paddle
            paddle.disable_static()

            cell = paddle.nn.SimpleRNNCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))
520
            outputs, final_states = paddle.fluid.layers.rnn(cell, inputs, prev_h)
F
Feiyu Chan 已提交
521

G
Guo Sheng 已提交
522
    """
J
Jiabin Yang 已提交
523
    if _non_static_mode():
524 525 526 527 528 529 530 531 532
        return _rnn_dynamic_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )
F
Feiyu Chan 已提交
533
    else:
534 535 536 537 538 539 540 541 542
        return _rnn_static_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )
F
Feiyu Chan 已提交
543 544


545
class ArrayWrapper:
F
Feiyu Chan 已提交
546 547 548 549 550 551 552
    def __init__(self, x):
        self.array = [x]

    def append(self, x):
        self.array.append(x)
        return self

553 554 555
    def __getitem__(self, item):
        return self.array.__getitem__(item)

F
Feiyu Chan 已提交
556 557 558

def _maybe_copy(state, new_state, step_mask):
    """update rnn state or just pass the old state through"""
559 560 561
    new_state = nn.elementwise_mul(
        new_state, step_mask, axis=0
    ) + nn.elementwise_mul(state, (1 - step_mask), axis=0)
F
Feiyu Chan 已提交
562 563 564 565 566
    return new_state


def _transpose_batch_time(x):
    perm = [1, 0] + list(range(2, len(x.shape)))
567
    return paddle.transpose(x, perm)
F
Feiyu Chan 已提交
568 569


570 571 572 573 574 575 576 577 578
def _rnn_dynamic_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
F
Feiyu Chan 已提交
579 580 581 582
    time_step_index = 0 if time_major else 1
    flat_inputs = flatten(inputs)
    time_steps = flat_inputs[0].shape[time_step_index]

583 584
    if initial_states is None:
        initial_states = cell.get_initial_states(
585 586
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
587

F
Feiyu Chan 已提交
588 589 590 591
    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length is not None:
592 593 594
        mask = sequence_lod.sequence_mask(
            sequence_length, maxlen=time_steps, dtype=inputs.dtype
        )
595
        mask = paddle.transpose(mask, [1, 0])
F
Feiyu Chan 已提交
596 597

    if is_reverse:
598
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
599
        mask = (
600
            paddle.reverse(mask, axis=[0])
601 602 603
            if sequence_length is not None
            else None
        )
F
Feiyu Chan 已提交
604 605 606 607 608 609 610

    states = initial_states
    outputs = []
    for i in range(time_steps):
        step_inputs = map_structure(lambda x: x[i], inputs)
        step_outputs, new_states = cell(step_inputs, states, **kwargs)
        if sequence_length is not None:
611 612 613
            new_states = map_structure(
                partial(_maybe_copy, step_mask=mask[i]), states, new_states
            )
F
Feiyu Chan 已提交
614
        states = new_states
615 616 617 618 619 620 621
        outputs = (
            map_structure(lambda x: ArrayWrapper(x), step_outputs)
            if i == 0
            else map_structure(
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )
F
Feiyu Chan 已提交
622 623

    final_outputs = map_structure(
624
        lambda x: paddle.stack(x.array, axis=time_step_index), outputs
625
    )
F
Feiyu Chan 已提交
626 627 628

    if is_reverse:
        final_outputs = map_structure(
629
            lambda x: paddle.reverse(x, axis=time_step_index), final_outputs
630
        )
F
Feiyu Chan 已提交
631 632 633 634 635

    final_states = new_states
    return final_outputs, final_states


636 637 638 639 640 641 642 643 644
def _rnn_static_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
X
Xing Wu 已提交
645 646 647
    check_type(inputs, 'inputs', (Variable, list, tuple), 'rnn')
    if isinstance(inputs, (list, tuple)):
        for i, input_x in enumerate(inputs):
648 649 650 651 652 653 654 655 656
            check_variable_and_dtype(
                input_x, 'inputs[' + str(i) + ']', ['float32', 'float64'], 'rnn'
            )
    check_type(
        initial_states,
        'initial_states',
        (Variable, list, tuple, type(None)),
        'rnn',
    )
X
Xing Wu 已提交
657

658 659 660
    check_type(
        sequence_length, 'sequence_length', (Variable, type(None)), 'rnn'
    )
G
Guo Sheng 已提交
661 662 663 664 665 666

    def _switch_grad(x, stop=False):
        x.stop_gradient = stop
        return x

    if initial_states is None:
667
        initial_states = cell.get_initial_states(
668 669
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
G
Guo Sheng 已提交
670 671 672 673 674 675 676
    initial_states = map_structure(_switch_grad, initial_states)

    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length:
        max_seq_len = nn.shape(flatten(inputs)[0])[0]
677
        mask = sequence_lod.sequence_mask(
G
Guo Sheng 已提交
678 679
            sequence_length,
            maxlen=max_seq_len,
680 681
            dtype=flatten(initial_states)[0].dtype,
        )
682
        mask = paddle.transpose(mask, [1, 0])
G
Guo Sheng 已提交
683
    if is_reverse:
684 685
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
        mask = paddle.reverse(mask, axis=[0]) if sequence_length else None
G
Guo Sheng 已提交
686 687 688 689 690 691 692

    # StaticRNN
    rnn = control_flow.StaticRNN()
    with rnn.step():
        inputs = map_structure(rnn.step_input, inputs)
        states = map_structure(rnn.memory, initial_states)
        copy_states = map_structure(lambda x: x, states)
H
Huihuang Zheng 已提交
693
        outputs, new_states = cell(inputs, copy_states, **kwargs)
G
Guo Sheng 已提交
694 695 696 697
        assert_same_structure(states, new_states)
        if sequence_length:
            step_mask = rnn.step_input(mask)
            new_states = map_structure(
698 699
                partial(_maybe_copy, step_mask=step_mask), states, new_states
            )
G
Guo Sheng 已提交
700 701 702 703 704 705 706

        map_structure(rnn.update_memory, states, new_states)
        flat_outputs = flatten(outputs)
        map_structure(rnn.step_output, outputs)
        map_structure(rnn.step_output, new_states)

    rnn_out = rnn()
707
    final_outputs = rnn_out[: len(flat_outputs)]
G
Guo Sheng 已提交
708
    final_outputs = pack_sequence_as(outputs, final_outputs)
709
    final_states = map_structure(lambda x: x[-1], rnn_out[len(flat_outputs) :])
G
Guo Sheng 已提交
710 711 712
    final_states = pack_sequence_as(new_states, final_states)

    if is_reverse:
713
        final_outputs = map_structure(
714
            lambda x: paddle.reverse(x, axis=[0]), final_outputs
715
        )
G
Guo Sheng 已提交
716 717 718 719 720 721 722

    if not time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

    return (final_outputs, final_states)


723 724 725 726 727 728 729 730 731
def birnn(
    cell_fw,
    cell_bw,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    **kwargs
):
F
Feiyu Chan 已提交
732
    """
733 734 735
    birnn creates a bidirectional recurrent neural network specified by
    RNNCell `cell_fw` and `cell_bw`, which performs :code:`cell.call()`
    (for dygraph mode :code:`cell.forward`) repeatedly until reaches to
736
    the maximum length of `inputs` and then concat the outputs for both RNNs
F
Feiyu Chan 已提交
737 738 739 740 741
    along the last axis.

    Arguments:
        cell_fw(RNNCellBase): An instance of `RNNCellBase`.
        cell_bw(RNNCellBase): An instance of `RNNCellBase`.
742 743
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
F
Feiyu Chan 已提交
744 745
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
746
        initial_states(tuple, optional): A tuple of initial states of
F
Feiyu Chan 已提交
747
            `cell_fw` and `cell_bw`.
748
            If not provided, `cell.get_initial_states` would be called to
F
Feiyu Chan 已提交
749
            produce initial state for each cell. Defaults to None.
750
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
F
Feiyu Chan 已提交
751
            or int32. The valid lengths of input sequences. Defaults to None.
752 753
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
F
Feiyu Chan 已提交
754 755 756
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
757
        **kwargs: Additional keyword arguments to pass to `forward` of each cell.
F
Feiyu Chan 已提交
758 759 760

    Returns:
        (outputs, final_states)
761 762 763
        outputs (Tensor): the outputs of the bidirectional RNN. It is the
            concatenation of the outputs from the forward RNN and backward
            RNN along the last axis.
F
Feiyu Chan 已提交
764 765 766
            If time major is True, the shape is `[time_steps, batch_size, size]`,
            else the shape is `[batch_size, time_steps, size]`, where size is
            `cell_fw.hidden_size + cell_bw.hidden_size`.
767 768
        final_states (tuple): A tuple of the final states of the forward
            cell and backward cell.
F
Feiyu Chan 已提交
769 770 771 772

    Examples:

        .. code-block:: python
773

F
Feiyu Chan 已提交
774 775 776 777 778 779 780 781 782 783
            import paddle
            paddle.disable_static()

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            hf, cf = paddle.rand((4, 32)), paddle.rand((4, 32))
            hb, cb = paddle.rand((4, 32)), paddle.rand((4, 32))
            initial_states = ((hf, cf), (hb, cb))
784
            outputs, final_states = paddle.fluid.layers.birnn(
F
Feiyu Chan 已提交
785
                cell_fw, cell_bw, inputs, initial_states)
786

F
Feiyu Chan 已提交
787 788 789
    """
    if initial_states is None:
        states_fw = cell_fw.get_initial_states(
790 791
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
F
Feiyu Chan 已提交
792
        states_bw = cell_fw.get_initial_states(
793 794
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
F
Feiyu Chan 已提交
795 796
    else:
        states_fw, states_bw = initial_states
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    outputs_fw, states_fw = rnn(
        cell_fw,
        inputs,
        states_fw,
        sequence_length,
        time_major=time_major,
        **kwargs
    )

    outputs_bw, states_bw = rnn(
        cell_bw,
        inputs,
        states_bw,
        sequence_length,
        time_major=time_major,
        is_reverse=True,
        **kwargs
    )

    outputs = map_structure(
        lambda x, y: tensor.concat([x, y], -1), outputs_fw, outputs_bw
    )
F
Feiyu Chan 已提交
819 820 821 822 823

    final_states = (states_fw, states_bw)
    return outputs, final_states


824
class Decoder:
G
Guo Sheng 已提交
825
    """
826
        :api_attr: Static Graph
S
swtkiwi 已提交
827

G
Guo Sheng 已提交
828 829
    Decoder is the base class for any decoder instance used in `dynamic_decode`.
    It provides interface for output generation for one time step, which can be
830
    used to generate sequences.
G
Guo Sheng 已提交
831 832 833 834 835

    The key abstraction provided by Decoder is:

    1. :code:`(initial_input, initial_state, finished) = initialize(inits)` ,
    which generates the input and state for the first decoding step, and gives the
836
    initial status telling whether each sequence in the batch is finished.
G
Guo Sheng 已提交
837 838 839
    It would be called once before the decoding iterations.

    2. :code:`(output, next_state, next_input, finished) = step(time, input, state)` ,
840
    which transforms the input and state to the output and new state, generates
G
Guo Sheng 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    input for the next decoding step, and emits the flag indicating finished status.
    It is the main part for each decoding iteration.

    3. :code:`(final_outputs, final_state) = finalize(outputs, final_state, sequence_lengths)` ,
    which revises the outputs(stack of all time steps' output) and final state(state from the
    last decoding step) to get the counterpart for special usage.
    Not necessary to be implemented if no need to revise the stacked outputs and
    state from the last decoding step. If implemented, it would be called after
    the decoding iterations.

    Decoder is more general compared to RNNCell, since the returned `next_input`
    and `finished` make it can determine the input and when to finish by itself
    when used in dynamic decoding. Decoder always wraps a RNNCell instance though
    not necessary.
    """

    def initialize(self, inits):
858
        r"""
G
Guo Sheng 已提交
859 860 861 862 863 864
        Called once before the decoding iterations.

        Parameters:
            inits: Argument provided by the caller.

        Returns:
865
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
G
Guo Sheng 已提交
866 867 868 869 870 871
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
        raise NotImplementedError

872
    def step(self, time, inputs, states, **kwargs):
873
        r"""
874
        Called per step of decoding.
G
Guo Sheng 已提交
875 876 877 878 879 880

        Parameters:
            time(Variable): A Tensor with shape :math:`[1]` provided by the caller.
                The data type is int64.
            inputs(Variable): A (possibly nested structure of) tensor variable[s].
            states(Variable): A (possibly nested structure of) tensor variable[s].
881
            **kwargs: Additional keyword arguments, provided by the caller.
882

G
Guo Sheng 已提交
883 884 885 886 887 888 889 890 891 892 893
        Returns:
            tuple: A tuple( :code:(outputs, next_states, next_inputs, finished)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s], and the structure, shape and \
                data type must be same as the counterpart from input arguments. \
                `outputs` is a (possibly nested structure of) tensor variable[s]. \
                `finished` is a Tensor with bool data type.
        """
        raise NotImplementedError

    def finalize(self, outputs, final_states, sequence_lengths):
894
        r"""
G
Guo Sheng 已提交
895 896 897 898 899
        Called once after the decoding iterations if implemented.

        Parameters:
            outputs(Variable): A (possibly nested structure of) tensor variable[s].
                The structure and data type is same as `output_dtype`.
900 901
                The tensor stacks all time steps' output thus has shape
                :math:`[time\_step, batch\_size, ...]` , which is done by the caller.
G
Guo Sheng 已提交
902 903
            final_states(Variable): A (possibly nested structure of) tensor variable[s].
                It is the `next_states` returned by `decoder.step` at last decoding step,
T
tianshuo78520a 已提交
904
                thus has the same structure, shape and data type with states at any time
G
Guo Sheng 已提交
905 906 907 908 909 910 911 912 913
                step.

        Returns:
            tuple: A tuple( :code:`(final_outputs, final_states)` ). \
                `final_outputs` and `final_states` both are a (possibly nested \
                structure of) tensor variable[s].
        """
        raise NotImplementedError

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
    @property
    def tracks_own_finished(self):
        """
        Describes whether the Decoder keeps track of finished states by itself.

        `decoder.step()` would emit a bool `finished` value at each decoding
        step. The emited `finished` can be used to determine whether every
        batch entries is finished directly, or it can be combined with the
        finished tracker keeped in `dynamic_decode` by performing a logical OR
        to take the already finished into account.

        If `False`, the latter would be took when performing `dynamic_decode`,
        which is the default. Otherwise, the former would be took, which uses
        the finished value emited by the decoder as all batch entry finished
        status directly, and it is the case when batch entries might be
        reordered such as beams in BeamSearchDecoder.

        Returns:
            bool: A python bool `False`.
        """
        return False

G
Guo Sheng 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

class BeamSearchDecoder(Decoder):
    """
    Decoder with beam search decoding strategy. It wraps a cell to get probabilities,
    and follows a beam search step to calculate scores and select candidate
    token ids for each decoding step.

    Please refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.

    **NOTE** When decoding with beam search, the `inputs` and `states` of cell
    would be tiled to `beam_size` (unsqueeze and tile), resulting to shapes like
    `[batch_size * beam_size, ...]` , which is built into `BeamSearchDecoder` and
    done automatically. Thus any other tensor with shape `[batch_size, ...]` used
    in `cell.call` needs to be tiled manually first, which can be completed by using
    :code:`BeamSearchDecoder.tile_beam_merge_with_batch` . The most common case
    for this is the encoder output in attention mechanism.

954 955
    Returns:
        BeamSearchDecoder: An instance of decoder which can be used in \
956
            `paddle.nn.dynamic_decode` to implement decoding.
G
Guo Sheng 已提交
957 958 959 960

    Examples:

        .. code-block:: python
961

962 963 964 965 966 967 968
            import numpy as np
            import paddle
            from paddle.nn import BeamSearchDecoder, dynamic_decode
            from paddle.nn import GRUCell, Linear, Embedding
            trg_embeder = Embedding(100, 32)
            output_layer = Linear(32, 32)
            decoder_cell = GRUCell(input_size=32, hidden_size=32)
G
Guo Sheng 已提交
969 970 971 972 973 974
            decoder = BeamSearchDecoder(decoder_cell,
                                        start_token=0,
                                        end_token=1,
                                        beam_size=4,
                                        embedding_fn=trg_embeder,
                                        output_fn=output_layer)
975

G
Guo Sheng 已提交
976 977
    """

978 979 980 981 982 983 984 985 986
    def __init__(
        self,
        cell,
        start_token,
        end_token,
        beam_size,
        embedding_fn=None,
        output_fn=None,
    ):
G
Guo Sheng 已提交
987 988 989 990
        """
        Constructor of BeamSearchDecoder.

        Parameters:
991
            cell(RNNCellBase): An instance of `RNNCellBase` or object with the same interface.
G
Guo Sheng 已提交
992 993 994
            start_token(int): The start token id.
            end_token(int): The end token id.
            beam_size(int): The beam width used in beam search.
995
            embedding_fn(optional): A callable to apply to selected candidate ids.
G
Guo Sheng 已提交
996 997
                Mostly it is an embedding layer to transform ids to embeddings,
                and the returned value acts as the `input` argument for `cell.call`.
T
tianshuo78520a 已提交
998
                If not provided, the id to embedding transformation must be built into
G
Guo Sheng 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
                `cell.call`. Default None.
            output_fn(optional): A callable to apply to the cell's output prior to
                calculate scores and select candidate token ids. Default None.
        """
        self.cell = cell
        self.embedding_fn = embedding_fn
        self.output_fn = output_fn
        self.start_token = start_token
        self.end_token = end_token
        self.beam_size = beam_size

    @staticmethod
    def tile_beam_merge_with_batch(x, beam_size):
1012
        r"""
G
Guo Sheng 已提交
1013
        Tile the batch dimension of a tensor. Specifically, this function takes
1014
        a tensor t shaped `[batch_size, s0, s1, ...]` composed of minibatch
G
Guo Sheng 已提交
1015 1016 1017 1018 1019 1020
        entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
        `[batch_size * beam_size, s0, s1, ...]` composed of minibatch entries
        `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
        `beam_size` times.

        Parameters:
T
tianshuo78520a 已提交
1021
            x(Variable): A tensor with shape `[batch_size, ...]`. The data type
G
Guo Sheng 已提交
1022 1023 1024 1025 1026 1027 1028
                should be float32, float64, int32, int64 or bool.
            beam_size(int): The beam width used in beam search.

        Returns:
            Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \
                data type is same as `x`.
        """
1029 1030 1031
        check_type(
            x, 'x', (Variable), 'BeamSearchDecoder.tile_beam_merge_with_batch'
        )
G
Guo Sheng 已提交
1032 1033 1034
        x = nn.unsqueeze(x, [1])  # [batch_size, 1, ...]
        expand_times = [1] * len(x.shape)
        expand_times[1] = beam_size
1035
        x = paddle.tile(x, expand_times)  # [batch_size, beam_size, ...]
1036
        x = paddle.transpose(
1037 1038
            x, list(range(2, len(x.shape))) + [0, 1]
        )  # [..., batch_size, beam_size]
G
Guo Sheng 已提交
1039
        # use 0 to copy to avoid wrong shape
1040
        x = paddle.reshape(
1041 1042
            x, shape=[0] * (len(x.shape) - 2) + [-1]
        )  # [..., batch_size * beam_size]
1043
        x = paddle.transpose(
1044 1045
            x, [len(x.shape) - 1] + list(range(0, len(x.shape) - 1))
        )  # [batch_size * beam_size, ...]
G
Guo Sheng 已提交
1046 1047 1048
        return x

    def _split_batch_beams(self, x):
1049
        r"""
G
Guo Sheng 已提交
1050
        Reshape a tensor with shape `[batch_size * beam_size, ...]` to a new
1051
        tensor with shape `[batch_size, beam_size, ...]`.
G
Guo Sheng 已提交
1052 1053

        Parameters:
T
tianshuo78520a 已提交
1054
            x(Variable): A tensor with shape `[batch_size * beam_size, ...]`. The
G
Guo Sheng 已提交
1055 1056 1057 1058
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \
1059
                data type is same as `x`.
G
Guo Sheng 已提交
1060
        """
1061
        check_type(x, 'x', (Variable), 'BeamSearchDecoder._split_batch_beams')
G
Guo Sheng 已提交
1062
        # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
1063
        return paddle.reshape(x, shape=[-1, self.beam_size] + list(x.shape[1:]))
G
Guo Sheng 已提交
1064 1065

    def _merge_batch_beams(self, x):
1066
        r"""
G
Guo Sheng 已提交
1067
        Reshape a tensor with shape `[batch_size, beam_size, ...]` to a new
1068
        tensor with shape `[batch_size * beam_size, ...]`.
G
Guo Sheng 已提交
1069 1070

        Parameters:
T
tianshuo78520a 已提交
1071
            x(Variable): A tensor with shape `[batch_size, beam_size, ...]`. The
G
Guo Sheng 已提交
1072 1073 1074 1075
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \
1076
                data type is same as `x`.
G
Guo Sheng 已提交
1077
        """
1078
        check_type(x, 'x', (Variable), 'BeamSearchDecoder._merge_batch_beams')
G
Guo Sheng 已提交
1079
        # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
1080
        return paddle.reshape(x, shape=[-1] + list(x.shape[2:]))
G
Guo Sheng 已提交
1081 1082

    def _expand_to_beam_size(self, x):
1083
        r"""
G
Guo Sheng 已提交
1084 1085 1086 1087 1088 1089 1090
        This function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed
        of minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a
        shape `[batch_size, beam_size, s0, s1, ...]` composed of minibatch entries
        `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
        `beam_size` times.

        Parameters:
1091 1092
            x(Variable): A tensor with shape `[batch_size, ...]`, The data type
                should be float32, float64, int32, int64 or bool.
G
Guo Sheng 已提交
1093 1094 1095 1096 1097

        Returns:
            Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \
                data type is same as `x`.
        """
1098
        check_type(x, 'x', (Variable), 'BeamSearchDecoder._expand_to_beam_size')
G
Guo Sheng 已提交
1099 1100 1101
        x = nn.unsqueeze(x, [1])
        expand_times = [1] * len(x.shape)
        expand_times[1] = self.beam_size
1102
        x = paddle.tile(x, expand_times)
G
Guo Sheng 已提交
1103 1104 1105
        return x

    def _mask_probs(self, probs, finished):
1106
        r"""
G
Guo Sheng 已提交
1107 1108 1109 1110 1111
        Mask log probabilities. It forces finished beams to allocate all probability
        mass to eos and unfinished beams to remain unchanged.

        Parameters:
            probs(Variable): A tensor with shape `[batch_size, beam_size, vocab_size]`,
X
Xing Wu 已提交
1112
                representing the log probabilities. Its data type should be float32 or float64.
G
Guo Sheng 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121
            finished(Variable): A tensor with shape `[batch_size, beam_size]`,
                representing the finished status for all beams. Its data type
                should be bool.

        Returns:
            Variable: A tensor with the same shape and data type as `x`, \
                where unfinished beams stay unchanged and finished beams are \
                replaced with a tensor with all probability on the EOS token.
        """
1122
        check_type(probs, 'probs', (Variable), 'BeamSearchDecoder._mask_probs')
1123 1124 1125
        check_type(
            finished, 'finished', (Variable), 'BeamSearchDecoder._mask_probs'
        )
G
Guo Sheng 已提交
1126 1127
        # TODO: use where_op
        finished = tensor.cast(finished, dtype=probs.dtype)
1128
        probs = paddle.multiply(
1129
            paddle.tile(nn.unsqueeze(finished, [2]), [1, 1, self.vocab_size]),
G
Guo Sheng 已提交
1130
            self.noend_mask_tensor,
1131
        ) - nn.elementwise_mul(probs, (finished - 1), axis=0)
G
Guo Sheng 已提交
1132 1133 1134
        return probs

    def _gather(self, x, indices, batch_size):
1135
        r"""
G
Guo Sheng 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        Gather from the tensor `x` using `indices`.

        Parameters:
            x(Variable): A tensor with shape `[batch_size, beam_size, ...]`.
            indices(Variable): A `int64` tensor with shape `[batch_size, beam_size]`,
                representing the indices that we use to gather.
            batch_size(Variable): A tensor with shape `[1]`. Its data type should
                be int32 or int64.

        Returns:
            Variable: A tensor with the same shape and data type as `x`, \
                representing the gathered tensor.
        """
1149 1150
        check_type(x, 'x', (Variable), 'BeamSearchDecoder._gather')
        check_type(indices, 'indices', (Variable), 'BeamSearchDecoder._gather')
1151 1152 1153
        check_type(
            batch_size, 'batch_size', (Variable), 'BeamSearchDecoder._gather'
        )
G
Guo Sheng 已提交
1154
        # TODO: compatibility of int32 and int64
1155 1156 1157 1158 1159
        batch_size = (
            tensor.cast(batch_size, indices.dtype)
            if batch_size.dtype != indices.dtype
            else batch_size
        )
1160
        batch_size.stop_gradient = True  # TODO: remove this
1161
        batch_pos = paddle.tile(
1162
            nn.unsqueeze(
C
ccrrong 已提交
1163
                paddle.arange(0, batch_size, 1, dtype=indices.dtype), [1]
1164 1165 1166
            ),
            [1, self.beam_size],
        )
1167
        topk_coordinates = paddle.stack([batch_pos, indices], axis=2)
1168
        topk_coordinates.stop_gradient = True
1169
        return paddle.gather_nd(x, topk_coordinates)
G
Guo Sheng 已提交
1170 1171

    class OutputWrapper(
1172 1173 1174 1175
        collections.namedtuple(
            "OutputWrapper", ("scores", "predicted_ids", "parent_ids")
        )
    ):
G
Guo Sheng 已提交
1176 1177 1178 1179
        """
        The structure for the returned value `outputs` of `decoder.step`.
        A namedtuple includes scores, predicted_ids, parent_ids as fields.
        """
1180

G
Guo Sheng 已提交
1181 1182 1183
        pass

    class StateWrapper(
1184 1185 1186 1187
        collections.namedtuple(
            "StateWrapper", ("cell_states", "log_probs", "finished", "lengths")
        )
    ):
G
Guo Sheng 已提交
1188 1189 1190 1191
        """
        The structure for the argument `states` of `decoder.step`.
        A namedtuple includes cell_states, log_probs, finished, lengths as fields.
        """
1192

G
Guo Sheng 已提交
1193 1194 1195
        pass

    def initialize(self, initial_cell_states):
1196
        r"""
G
Guo Sheng 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205
        Initialize the BeamSearchDecoder.

        Parameters:
            initial_cell_states(Variable): A (possibly nested structure of)
                tensor variable[s]. An argument provided by the caller.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` is a tensor t filled by `start_token` with shape \
1206
                `[batch_size, beam_size]` when `embedding_fn` is None, or the \
G
Guo Sheng 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
                returned value of `embedding_fn(t)` when `embedding_fn` is provided. \
                `initial_states` is a nested structure(namedtuple including cell_states, \
                log_probs, finished, lengths as fields) of tensor variables, where \
                `log_probs, finished, lengths` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, bool, int64`. \
                cell_states has a value with the same structure as the input \
                argument `initial_cell_states` but with tiled shape `[batch_size, beam_size, ...]`. \
                `finished` is a `bool` tensor filled by False with shape `[batch_size, beam_size]`.
        """
        self.kinf = 1e9
        state = flatten(initial_cell_states)[0]
        self.batch_size = nn.shape(state)[0]

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        self.start_token_tensor = tensor.fill_constant(
            shape=[1], dtype="int64", value=self.start_token
        )
        self.end_token_tensor = tensor.fill_constant(
            shape=[1], dtype="int64", value=self.end_token
        )

        init_cell_states = map_structure(
            self._expand_to_beam_size, initial_cell_states
        )
        init_inputs = paddle.full(
            shape=[self.batch_size, self.beam_size],
            fill_value=self.start_token_tensor,
            dtype=self.start_token_tensor.dtype,
        )
1235
        log_probs = paddle.tile(
G
Guo Sheng 已提交
1236
            tensor.assign(
1237 1238 1239 1240 1241 1242 1243
                np.array(
                    [[0.0] + [-self.kinf] * (self.beam_size - 1)],
                    dtype="float32",
                )
            ),
            [self.batch_size, 1],
        )
1244 1245
        if paddle.get_default_dtype() == "float64":
            log_probs = tensor.cast(log_probs, "float64")
G
Guo Sheng 已提交
1246 1247 1248 1249 1250 1251
        # TODO: remove the restriction of force_cpu
        init_finished = tensor.fill_constant_batch_size_like(
            input=state,
            shape=[-1, self.beam_size],
            dtype="bool",
            value=False,
1252 1253
            force_cpu=True,
        )
1254
        init_lengths = paddle.zeros_like(init_inputs)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        init_inputs = (
            self.embedding_fn(init_inputs) if self.embedding_fn else init_inputs
        )
        return (
            init_inputs,
            self.StateWrapper(
                init_cell_states, log_probs, init_finished, init_lengths
            ),
            init_finished,
        )
G
Guo Sheng 已提交
1265 1266

    def _beam_search_step(self, time, logits, next_cell_states, beam_state):
1267
        r"""
G
Guo Sheng 已提交
1268 1269 1270 1271 1272 1273 1274 1275
        Calculate scores and select candidate token ids.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            logits(Variable): A tensor with shape `[batch_size, beam_size, vocab_size]`,
                representing the logits at the current time step. Its data type is float32.
            next_cell_states(Variable): A (possibly nested structure of) tensor variable[s].
1276 1277
                It has the same structure, shape and data type as the `cell_states` of
                `initial_states` returned by `initialize()`. It represents the next state
G
Guo Sheng 已提交
1278 1279 1280 1281
                from the cell.
            beam_state(Variable): A structure of tensor variables.
                It is same as the `initial_states` returned by `initialize()` for
                the first decoding step and `beam_search_state` returned by
1282
                `step()` for the others.
1283

G
Guo Sheng 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
        Returns:
            tuple: A tuple( :code:`(beam_search_output, beam_search_state)` ). \
                `beam_search_output` is a namedtuple(including scores, predicted_ids, \
                parent_ids as fields) of tensor variables, where \
                `scores, predicted_ids, parent_ids` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, int64, int64`.
                `beam_search_state` has the same structure, shape and data type \
                as the input argument `beam_state`.

        """
        self.vocab_size = logits.shape[-1]
1295 1296 1297
        self.vocab_size_tensor = tensor.fill_constant(
            shape=[1], dtype="int64", value=self.vocab_size
        )
G
Guo Sheng 已提交
1298 1299
        noend_array = [-self.kinf] * self.vocab_size
        noend_array[self.end_token] = 0
1300

G
Guo Sheng 已提交
1301
        self.noend_mask_tensor = tensor.assign(np.array(noend_array, "float32"))
1302
        if paddle.get_default_dtype() == "float64":
1303 1304 1305
            self.noend_mask_tensor = tensor.cast(
                self.noend_mask_tensor, "float64"
            )
G
Guo Sheng 已提交
1306

1307
        step_log_probs = paddle.log(nn.softmax(logits))
G
Guo Sheng 已提交
1308
        step_log_probs = self._mask_probs(step_log_probs, beam_state.finished)
1309 1310 1311
        log_probs = nn.elementwise_add(
            x=step_log_probs, y=beam_state.log_probs, axis=0
        )
G
Guo Sheng 已提交
1312 1313
        # TODO: length penalty
        scores = log_probs
1314
        scores = paddle.reshape(scores, [-1, self.beam_size * self.vocab_size])
1315
        # TODO: add grad for topk then this beam search can be used to train
1316
        topk_scores, topk_indices = paddle.topk(x=scores, k=self.beam_size)
1317 1318
        beam_indices = paddle.floor_divide(topk_indices, self.vocab_size_tensor)
        token_indices = paddle.remainder(topk_indices, self.vocab_size_tensor)
G
Guo Sheng 已提交
1319
        next_log_probs = self._gather(
1320
            paddle.reshape(log_probs, [-1, self.beam_size * self.vocab_size]),
1321 1322 1323
            topk_indices,
            self.batch_size,
        )
G
Guo Sheng 已提交
1324 1325
        next_cell_states = map_structure(
            lambda x: self._gather(x, beam_indices, self.batch_size),
1326 1327 1328 1329 1330 1331 1332 1333 1334
            next_cell_states,
        )
        next_finished = self._gather(
            beam_state.finished, beam_indices, self.batch_size
        )
        next_lengths = self._gather(
            beam_state.lengths, beam_indices, self.batch_size
        )
        next_lengths = next_lengths + tensor.cast(
2
201716010711 已提交
1335
            paddle.logical_not(next_finished), beam_state.lengths.dtype
1336
        )
2
201716010711 已提交
1337
        next_finished = paddle.logical_or(
G
Guo Sheng 已提交
1338
            next_finished,
1339
            paddle.equal(token_indices, self.end_token_tensor),
1340 1341 1342 1343 1344 1345 1346 1347
        )

        beam_search_output = self.OutputWrapper(
            topk_scores, token_indices, beam_indices
        )
        beam_search_state = self.StateWrapper(
            next_cell_states, next_log_probs, next_finished, next_lengths
        )
G
Guo Sheng 已提交
1348 1349 1350
        return beam_search_output, beam_search_state

    def step(self, time, inputs, states, **kwargs):
1351
        r"""
G
Guo Sheng 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        Perform a beam search decoding step, which uses `cell` to get probabilities,
        and follows a beam search step to calculate scores and select candidate
        token ids.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            inputs(Variable): A tensor variable. It is same as `initial_inputs`
                returned by `initialize()` for the first decoding step and
                `next_inputs` returned by `step()` for the others.
            states(Variable): A structure of tensor variables.
                It is same as the `initial_states` returned by `initialize()` for
                the first decoding step and `beam_search_state` returned by
                `step()` for the others.
1366 1367
            **kwargs: Additional keyword arguments, provided by the caller.

G
Guo Sheng 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
        Returns:
            tuple: A tuple( :code:`(beam_search_output, beam_search_state, next_inputs, finished)` ). \
                `beam_search_state` and `next_inputs` have the same structure, \
                shape and data type as the input arguments `states` and `inputs` separately. \
                `beam_search_output` is a namedtuple(including scores, predicted_ids, \
                parent_ids as fields) of tensor variables, where \
                `scores, predicted_ids, parent_ids` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, int64, int64`. \
                `finished` is a `bool` tensor with shape `[batch_size, beam_size]`.
        """
        inputs = map_structure(self._merge_batch_beams, inputs)
        cell_states = map_structure(self._merge_batch_beams, states.cell_states)
1380 1381 1382
        cell_outputs, next_cell_states = self.cell(
            inputs, cell_states, **kwargs
        )
G
Guo Sheng 已提交
1383
        cell_outputs = map_structure(self._split_batch_beams, cell_outputs)
1384 1385 1386
        next_cell_states = map_structure(
            self._split_batch_beams, next_cell_states
        )
G
Guo Sheng 已提交
1387 1388 1389 1390 1391 1392 1393 1394

        if self.output_fn is not None:
            cell_outputs = self.output_fn(cell_outputs)

        beam_search_output, beam_search_state = self._beam_search_step(
            time=time,
            logits=cell_outputs,
            next_cell_states=next_cell_states,
1395 1396
            beam_state=states,
        )
G
Guo Sheng 已提交
1397 1398
        finished = beam_search_state.finished
        sample_ids = beam_search_output.predicted_ids
1399
        sample_ids.stop_gradient = True
1400 1401 1402
        next_inputs = (
            self.embedding_fn(sample_ids) if self.embedding_fn else sample_ids
        )
G
Guo Sheng 已提交
1403 1404 1405 1406

        return (beam_search_output, beam_search_state, next_inputs, finished)

    def finalize(self, outputs, final_states, sequence_lengths):
1407
        r"""
G
Guo Sheng 已提交
1408 1409 1410 1411 1412 1413
        Use `gather_tree` to backtrace along the beam search tree and construct
        the full predicted sequences.

        Parameters:
            outputs(Variable): A structure(namedtuple) of tensor variables,
                The structure and data type is same as `output_dtype`.
1414 1415
                The tensor stacks all time steps' output thus has shape
                `[time_step, batch_size, ...]`, which is done by the caller.
G
Guo Sheng 已提交
1416 1417
            final_states(Variable): A structure(namedtuple) of tensor variables.
                It is the `next_states` returned by `decoder.step` at last
T
tianshuo78520a 已提交
1418
                decoding step, thus has the same structure, shape and data type
G
Guo Sheng 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
                with states at any time step.
            sequence_lengths(Variable): An `int64` tensor shaped `[batch_size, beam_size]`.
                It contains sequence lengths for each beam determined during
                decoding.

        Returns:
            tuple: A tuple( :code:`(predicted_ids, final_states)` ). \
                `predicted_ids` is an `int64` tensor shaped \
                `[time_step, batch_size, beam_size]`. `final_states` is the same \
                as the input argument `final_states`.
        """
1430
        predicted_ids = paddle.nn.functional.gather_tree(
1431 1432
            outputs.predicted_ids, outputs.parent_ids
        )
G
Guo Sheng 已提交
1433 1434 1435
        # TODO: use FinalBeamSearchDecoderOutput as output
        return predicted_ids, final_states

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
    @property
    def tracks_own_finished(self):
        """
        BeamSearchDecoder reorders its beams and their finished state. Thus it
        conflicts with `dynamic_decode` function's tracking of finished states.
        Setting this property to true to avoid early stopping of decoding due
        to mismanagement of the finished state.

        Returns:
            bool: A python bool `True`.
        """
        return True

G
Guo Sheng 已提交
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
def _dynamic_decode_imperative(
    decoder,
    inits=None,
    max_step_num=None,
    output_time_major=False,
    impute_finished=False,
    is_test=False,
    return_length=False,
    **kwargs
):
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
    def _maybe_copy(state, new_state, step_mask):
        # TODO: use where_op
        state_dtype = state.dtype
        if convert_dtype(state_dtype) in ["bool"]:
            state = tensor.cast(state, dtype="float32")
            new_state = tensor.cast(new_state, dtype="float32")
        if step_mask.dtype != state.dtype:
            step_mask = tensor.cast(step_mask, dtype=state.dtype)
            # otherwise, renamed bool gradients of would be summed up leading
            # to sum(bool) error.
            step_mask.stop_gradient = True
        new_state = nn.elementwise_mul(
1472 1473
            state, step_mask, axis=0
        ) - nn.elementwise_mul(new_state, (step_mask - 1), axis=0)
1474 1475 1476
        if convert_dtype(state_dtype) in ["bool"]:
            new_state = tensor.cast(new_state, dtype=state_dtype)
        return new_state
S
swtkiwi 已提交
1477

1478
    initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
1479 1480 1481 1482 1483
    inputs, states, finished = (
        initial_inputs,
        initial_states,
        initial_finished,
    )
1484
    cond = paddle.logical_not((paddle.all(initial_finished)))
1485
    sequence_lengths = tensor.cast(paddle.zeros_like(initial_finished), "int64")
1486 1487 1488
    outputs = None

    step_idx = 0
1489 1490 1491
    step_idx_tensor = tensor.fill_constant(
        shape=[1], dtype="int64", value=step_idx
    )
1492
    while cond.numpy():
1493 1494 1495
        (step_outputs, next_states, next_inputs, next_finished) = decoder.step(
            step_idx_tensor, inputs, states, **kwargs
        )
1496 1497 1498 1499 1500
        if not decoder.tracks_own_finished:
            # BeamSearchDecoder would track it own finished, since
            # beams would be reordered and the finished status of each
            # entry might change. Otherwise, perform logical OR which
            # would not change the already finished.
2
201716010711 已提交
1501
            next_finished = paddle.logical_or(next_finished, finished)
1502 1503 1504
            # To confirm states.finished/finished be consistent with
            # next_finished.
            tensor.assign(next_finished, finished)
1505
            next_sequence_lengths = paddle.add(
J
Jiaqi Liu 已提交
1506
                sequence_lengths,
1507
                tensor.cast(
2
201716010711 已提交
1508
                    paddle.logical_not(finished), sequence_lengths.dtype
1509 1510
                ),
            )
J
Jiaqi Liu 已提交
1511 1512
            if impute_finished:  # rectify the states for the finished.
                next_states = map_structure(
1513 1514 1515 1516
                    lambda x, y: _maybe_copy(x, y, finished),
                    states,
                    next_states,
                )
J
Jiaqi Liu 已提交
1517 1518 1519 1520
        else:
            warnings.warn(
                "`next_states` has no `lengths` attribute, the returned `sequence_lengths` would be all zeros."
            ) if not hasattr(next_states, "lengths") else None
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
            next_sequence_lengths = getattr(
                next_states, "lengths", sequence_lengths
            )

        outputs = (
            map_structure(lambda x: ArrayWrapper(x), step_outputs)
            if step_idx == 0
            else map_structure(
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )
        inputs, states, finished, sequence_lengths = (
            next_inputs,
            next_states,
            next_finished,
            next_sequence_lengths,
        )
G
Guo Sheng 已提交
1538

1539 1540
        control_flow.increment(x=step_idx_tensor, value=1.0, in_place=True)
        step_idx += 1
G
Guo Sheng 已提交
1541

1542
        cond = paddle.logical_not(paddle.all(finished))
1543 1544
        if max_step_num is not None and step_idx > max_step_num:
            break
G
Guo Sheng 已提交
1545

1546 1547 1548
    final_outputs = map_structure(
        lambda x: paddle.stack(x.array, axis=0), outputs
    )
1549
    final_states = states
G
Guo Sheng 已提交
1550

1551
    try:
1552 1553 1554
        final_outputs, final_states = decoder.finalize(
            final_outputs, final_states, sequence_lengths
        )
1555 1556
    except NotImplementedError:
        pass
G
Guo Sheng 已提交
1557

1558 1559
    if not output_time_major:
        final_outputs = map_structure(
1560 1561 1562
            lambda x: paddle.transpose(
                x, [1, 0] + list(range(2, len(x.shape)))
            ),
1563 1564
            final_outputs,
        )
1565

1566 1567 1568 1569 1570
    return (
        (final_outputs, final_states, sequence_lengths)
        if return_length
        else (final_outputs, final_states)
    )
1571 1572


1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
def _dynamic_decode_declarative(
    decoder,
    inits=None,
    max_step_num=None,
    output_time_major=False,
    impute_finished=False,
    is_test=False,
    return_length=False,
    **kwargs
):
G
Guo Sheng 已提交
1583
    initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
1584 1585 1586 1587 1588
    global_inputs, global_states, global_finished = (
        initial_inputs,
        initial_states,
        initial_finished,
    )
1589
    global_finished.stop_gradient = True
G
Guo Sheng 已提交
1590
    step_idx = tensor.fill_constant(shape=[1], dtype="int64", value=0)
1591

1592
    cond = paddle.logical_not((paddle.all(initial_finished)))
G
Guo Sheng 已提交
1593
    if max_step_num is not None:
1594 1595 1596
        max_step_num = tensor.fill_constant(
            shape=[1], dtype="int64", value=max_step_num
        )
1597
    while_op = control_flow.While(cond, is_test=is_test)
G
Guo Sheng 已提交
1598

1599
    sequence_lengths = tensor.cast(paddle.zeros_like(initial_finished), "int64")
1600 1601 1602 1603 1604 1605 1606 1607 1608
    sequence_lengths.stop_gradient = True

    if is_test:
        # for test, reuse inputs and states variables to save memory
        inputs = map_structure(lambda x: x, initial_inputs)
        states = map_structure(lambda x: x, initial_states)
    else:
        # inputs and states of all steps must be saved for backward and training
        inputs_arrays = map_structure(
1609 1610
            lambda x: control_flow.array_write(x, step_idx), initial_inputs
        )
1611
        states_arrays = map_structure(
1612 1613
            lambda x: control_flow.array_write(x, step_idx), initial_states
        )
G
Guo Sheng 已提交
1614 1615 1616

    def _maybe_copy(state, new_state, step_mask):
        # TODO: use where_op
1617 1618 1619 1620 1621 1622 1623 1624 1625
        state_dtype = state.dtype
        if convert_dtype(state_dtype) in ["bool"]:
            state = tensor.cast(state, dtype="float32")
            new_state = tensor.cast(new_state, dtype="float32")
        if step_mask.dtype != state.dtype:
            step_mask = tensor.cast(step_mask, dtype=state.dtype)
            # otherwise, renamed bool gradients of would be summed up leading
            # to sum(bool) error.
            step_mask.stop_gradient = True
G
Guo Sheng 已提交
1626
        new_state = nn.elementwise_mul(
1627 1628
            state, step_mask, axis=0
        ) - nn.elementwise_mul(new_state, (step_mask - 1), axis=0)
1629 1630
        if convert_dtype(state_dtype) in ["bool"]:
            new_state = tensor.cast(new_state, dtype=state_dtype)
G
Guo Sheng 已提交
1631 1632 1633
        return new_state

    def _transpose_batch_time(x):
1634
        return paddle.transpose(x, [1, 0] + list(range(2, len(x.shape))))
G
Guo Sheng 已提交
1635

1636 1637
    def _create_array_out_of_while(dtype):
        current_block_idx = default_main_program().current_block_idx
1638 1639 1640
        default_main_program().current_block_idx = (
            default_main_program().current_block().parent_idx
        )
1641
        tensor_array = paddle.tensor.create_array(dtype)
1642 1643 1644
        default_main_program().current_block_idx = current_block_idx
        return tensor_array

G
Guo Sheng 已提交
1645 1646
    # While
    with while_op.block():
1647 1648 1649
        if not is_test:
            inputs = map_structure(
                lambda array: control_flow.array_read(array, step_idx),
1650 1651
                inputs_arrays,
            )
1652 1653
            states = map_structure(
                lambda array: control_flow.array_read(array, step_idx),
1654 1655 1656 1657 1658
                states_arrays,
            )
        (outputs, next_states, next_inputs, next_finished) = decoder.step(
            step_idx, inputs, states, **kwargs
        )
1659 1660 1661 1662 1663
        if not decoder.tracks_own_finished:
            # BeamSearchDecoder would track it own finished, since beams would
            # be reordered and the finished status of each entry might change.
            # Otherwise, perform logical OR which would not change the already
            # finished.
2
201716010711 已提交
1664
            next_finished = paddle.logical_or(next_finished, global_finished)
1665
            next_sequence_lengths = paddle.add(
J
Jiaqi Liu 已提交
1666
                sequence_lengths,
1667
                tensor.cast(
2
201716010711 已提交
1668
                    paddle.logical_not(global_finished),
1669 1670 1671
                    sequence_lengths.dtype,
                ),
            )
J
Jiaqi Liu 已提交
1672 1673 1674 1675
            if impute_finished:  # rectify the states for the finished.
                next_states = map_structure(
                    lambda x, y: _maybe_copy(x, y, global_finished),
                    states,
1676 1677
                    next_states,
                )
J
Jiaqi Liu 已提交
1678 1679 1680 1681
        else:
            warnings.warn(
                "`next_states` has no `lengths` attribute, the returned `sequence_lengths` would be all zeros."
            ) if not hasattr(next_states, "lengths") else None
1682 1683 1684
            next_sequence_lengths = getattr(
                next_states, "lengths", sequence_lengths
            )
1685 1686 1687

        # create tensor array in global block after dtype[s] of outputs can be got
        outputs_arrays = map_structure(
1688 1689
            lambda x: _create_array_out_of_while(x.dtype), outputs
        )
1690

G
Guo Sheng 已提交
1691 1692
        map_structure(
            lambda x, x_array: control_flow.array_write(
1693 1694 1695 1696 1697
                x, i=step_idx, array=x_array
            ),
            outputs,
            outputs_arrays,
        )
G
Guo Sheng 已提交
1698
        control_flow.increment(x=step_idx, value=1.0, in_place=True)
1699 1700 1701 1702
        # update the global_finished first, since it might be also in states of
        # decoder, which otherwise would write a stale finished status to array
        tensor.assign(next_finished, global_finished)
        tensor.assign(next_sequence_lengths, sequence_lengths)
1703 1704 1705 1706 1707 1708
        if is_test:
            map_structure(tensor.assign, next_inputs, global_inputs)
            map_structure(tensor.assign, next_states, global_states)
        else:
            map_structure(
                lambda x, x_array: control_flow.array_write(
1709 1710 1711 1712 1713
                    x, i=step_idx, array=x_array
                ),
                next_inputs,
                inputs_arrays,
            )
1714 1715
            map_structure(
                lambda x, x_array: control_flow.array_write(
1716 1717 1718 1719 1720
                    x, i=step_idx, array=x_array
                ),
                next_states,
                states_arrays,
            )
G
Guo Sheng 已提交
1721
        if max_step_num is not None:
1722
            paddle.logical_and(
1723
                paddle.logical_not(paddle.all(global_finished)),
1724
                paddle.less_equal(step_idx, max_step_num),
1725 1726
                cond,
            )
G
Guo Sheng 已提交
1727
        else:
1728
            paddle.logical_not(paddle.all(global_finished), cond)
G
Guo Sheng 已提交
1729 1730 1731

    final_outputs = map_structure(
        lambda array: tensor.tensor_array_to_tensor(
1732 1733 1734 1735
            array, axis=0, use_stack=True
        )[0],
        outputs_arrays,
    )
1736 1737 1738 1739 1740
    if is_test:
        final_states = global_states
    else:
        final_states = map_structure(
            lambda array: control_flow.array_read(array, step_idx),
1741 1742
            states_arrays,
        )
G
Guo Sheng 已提交
1743 1744

    try:
1745 1746 1747
        final_outputs, final_states = decoder.finalize(
            final_outputs, final_states, sequence_lengths
        )
G
Guo Sheng 已提交
1748 1749 1750 1751 1752 1753
    except NotImplementedError:
        pass

    if not output_time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

1754 1755 1756 1757 1758
    return (
        (final_outputs, final_states, sequence_lengths)
        if return_length
        else (final_outputs, final_states)
    )
1759 1760


1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
def dynamic_decode(
    decoder,
    inits=None,
    max_step_num=None,
    output_time_major=False,
    impute_finished=False,
    is_test=False,
    return_length=False,
    **kwargs
):
1771
    r"""
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
    Dynamic decoding performs :code:`decoder.step()` repeatedly until the returned
    Tensor indicating finished status contains all True values or the number of
    decoding step reaches to :attr:`max_step_num`.

    :code:`decoder.initialize()` would be called once before the decoding loop.
    If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
    would be called once after the decoding loop.

    Parameters:
        decoder(Decoder): An instance of `Decoder`.
1782
        inits(object, optional): Argument passed to `decoder.initialize`.
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
            Default `None`.
        max_step_num(int, optional): The maximum number of steps. If not provided,
            decode until the decoder is fully done, or in other words, the returned
            Tensor by :code:`decoder.step()` indicating finished status contains
            all True. Default `None`.
        output_time_major(bool, optional): Indicate the data layout of Tensor included
            in the final outputs(the first returned value of this method). If
            attr:`False`, the data layout would be batch major with shape
            `[batch_size, seq_len, ...]`.  If attr:`True`, the data layout would
            be time major with shape `[seq_len, batch_size, ...]`. Default: `False`.
J
Jiaqi Liu 已提交
1793 1794 1795 1796 1797 1798 1799
        impute_finished(bool, optional): If `True` and `decoder.tracks_own_finished`
            is False, then states get copied through for batch entries which are
            marked as finished, which differs with the unfinished using the new states
            returned by :code:`decoder.step()` and ensures that the final states have
            the correct values. Otherwise, states wouldn't be copied through when
            finished. If the returned `final_states` is needed, it should be set as
            True, which causes some slowdown. Default `False`.
1800 1801 1802 1803 1804
        is_test(bool, optional): A flag indicating whether to use test mode. In
            test mode, it is more memory saving. Default `False`.
        return_length(bool, optional):  A flag indicating whether to return an
            extra Tensor variable in the output tuple, which stores the actual
            lengths of all decoded sequences. Default `False`.
1805
        **kwargs: Additional keyword arguments. Arguments passed to `decoder.step`.
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

    Returns:
        tuple: A tuple( :code:`(final_outputs, final_states, sequence_lengths)` ) \
            when `return_length` is True, otherwise a tuple( :code:`(final_outputs, final_states)` ). \
            The final outputs and states, both are Tensor or nested structure of Tensor. \
            `final_outputs` has the same structure and data types as the :code:`outputs` \
            returned by :code:`decoder.step()` , and each Tenser in `final_outputs` \
            is the stacked of all decoding steps' outputs, which might be revised \
            by :code:`decoder.finalize()` if the decoder has implemented `finalize`. \
            `final_states` is the counterpart at last time step of initial states \
            returned by :code:`decoder.initialize()` , thus has the same structure \
            with it and has tensors with same shapes and data types. `sequence_lengths` \
            is an `int64` tensor with the same shape as `finished` returned \
            by :code:`decoder.initialize()` , and it stores the actual lengths of \
            all decoded sequences.
1821

1822 1823 1824 1825

    Examples:

        .. code-block:: python
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
            import numpy as np
            import paddle
            from paddle.nn import BeamSearchDecoder, dynamic_decode
            from paddle.nn import GRUCell, Linear, Embedding
            trg_embeder = Embedding(100, 32)
            output_layer = Linear(32, 32)
            decoder_cell = GRUCell(input_size=32, hidden_size=32)
            decoder = BeamSearchDecoder(decoder_cell,
                                        start_token=0,
                                        end_token=1,
                                        beam_size=4,
                                        embedding_fn=trg_embeder,
                                        output_fn=output_layer)
            encoder_output = paddle.ones((4, 8, 32), dtype=paddle.get_default_dtype())
            outputs = dynamic_decode(decoder=decoder,
                                    inits=decoder_cell.get_initial_states(encoder_output),
                                    max_step_num=10)
    """
J
Jiabin Yang 已提交
1845
    if _non_static_mode():
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        return _dynamic_decode_imperative(
            decoder,
            inits,
            max_step_num,
            output_time_major,
            impute_finished,
            is_test,
            return_length,
            **kwargs
        )
1856
    else:
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
        return _dynamic_decode_declarative(
            decoder,
            inits,
            max_step_num,
            output_time_major,
            impute_finished,
            is_test,
            return_length,
            **kwargs
        )
1867 1868


1869
class DecodeHelper:
1870 1871 1872 1873 1874 1875 1876
    """
    DecodeHelper is the base class for any helper instance used in `BasicDecoder`.
    It provides interface to implement sampling and produce inputs for the next
    time step in dynamic decoding.
    """

    def initialize(self):
1877
        r"""
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        DecodeHelper initialization to produce inputs for the first decoding step
        and give the initial status telling whether each sequence in the batch
        is finished. It is the partial of the initialization of `BasicDecoder`.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_finished)` ). \
                `initial_inputs` is a (possibly nested structure of) tensor \
                variable[s], and the tensor's shape is `[batch_size, ...]`. \
                `initial_finished` is a bool tensor with shape `[batch_size]`.
        """
        pass

    def sample(self, time, outputs, states):
        """
        Perform sampling with some strategies according to `outputs`. It is the
        partial of `BasicDecoder.step`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor representing the sampled ids.
        """
        pass

    def next_inputs(self, time, outputs, states, sample_ids):
1911
        r"""
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
        Produce the inputs and states for next time step and give status telling
        whether each minibatch entry is finished. It is called after `sample` in
        `BasicDecoder.step`. It is the partial of `BasicDecoder.step`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.
            sample_ids(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `sample_ids` returned by `sample()`.

        Returns:
            tuple: A tuple( :code:`(finished, next_inputs, next_states)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s], and the structure, shape and \
                data type of `next_states` must be same as the input argument \
                `states`. `finished` is a bool tensor with shape `[batch_size]`.
        """
        pass


class TrainingHelper(DecodeHelper):
    """
    TrainingHelper is a subclass of DecodeHelper. It is a decoding helper
    slicing from the full sequence inputs as the inputs for corresponding
    step. And it uses `argmax` to sample from the outputs of `cell.call()`.

    Since the needs of sequence inputs, it is used mostly for teach-forcing MLE
    (maximum likelihood) training, and the sampled would not be used.

    Examples:
        .. code-block:: python
1949

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
            trg_seq_length = fluid.data(name="trg_seq_length",
                                        shape=[None],
                                        dtype="int64")
            helper = layers.TrainingHelper(trg_emb, trg_seq_length)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper)
            outputs = layers.dynamic_decode(
                decoder,
                inits=decoder_cell.get_initial_states(trg_emb),
                is_test=False)
    """

    def __init__(self, inputs, sequence_length, time_major=False):
        """
        Constructor of TrainingHelper.

        Parameters:
1972
            inputs(Variable): A (possibly nested structure of) tensor variable[s].
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
                The shape of tensor should be `[batch_size, sequence_length, ...]`
                for `time_major == False` or `[sequence_length, batch_size, ...]`
                for `time_major == True`. It represents the inputs to be sliced
                from at every decoding step.
            sequence_length(Variable): A tensor with shape `[batch_size]`.
                It stores real length of each instance in `inputs`, by which we
                can label the finished status of each instance at every decoding
                step.
            time_major(bool, optional): Indicate the data layout of Tensor included
                in `inputs`. If `False`, the data layout would be batch major with
                shape `[batch_size, sequence_length, ...]`.  If `True`, the data
                layout would be time major with shape `[sequence_length, batch_size, ...]`.
                Default: `False`.
        """
        self.inputs = inputs
        self.sequence_length = sequence_length
        self.time_major = time_major
        # extend inputs to avoid to slice out of range in `next_inputs`
        # may be easier and have better performance than condition_op
        self.inputs_ = map_structure(
1993 1994 1995 1996 1997 1998 1999 2000
            lambda x: nn.pad(
                x,
                paddings=([0, 1] + [0, 0] * (len(x.shape) - 1))
                if time_major
                else ([0, 0, 0, 1] + [0, 0] * (len(x.shape) - 2)),
            ),
            self.inputs,
        )
2001 2002

    def initialize(self):
2003
        r"""
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        TrainingHelper initialization produces inputs for the first decoding
        step by slicing at the first time step of full sequence inputs, and it
        gives initial status telling whether each sequence in the batch is
        finished. It is the partial of the initialization of `BasicDecoder`.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_finished)` ). \
                `initial_inputs` is a (possibly nested structure of) tensor \
                variable[s], and the tensor's shape is `[batch_size, ...]`. \
                `initial_finished` is a bool tensor with shape `[batch_size]`.
        """
2015
        init_finished = paddle.equal(
2016
            self.sequence_length,
2017 2018 2019 2020
            tensor.fill_constant(
                shape=[1], dtype=self.sequence_length.dtype, value=0
            ),
        )
2021 2022
        # TODO: support zero length
        init_inputs = map_structure(
2023 2024
            lambda x: x[0] if self.time_major else x[:, 0], self.inputs
        )
2025 2026 2027
        return init_inputs, init_finished

    def sample(self, time, outputs, states):
2028
        r"""
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
        Perform sampling by using `argmax` according to the `outputs`. Mostly
        the sampled ids would not be used since the inputs for next decoding
        step would be got by slicing.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
2039
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor with shape `[batch_size]`, representing \
                the sampled ids.
        """
        sample_ids = tensor.argmax(outputs, axis=-1)
        return sample_ids

    def next_inputs(self, time, outputs, states, sample_ids):
2051
        r"""
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
        Generate inputs for the next decoding step by slicing at corresponding
        step of the full sequence inputs. Simultaneously, produce the states
        for next time step by directly using the input `states` and emit status
        telling whether each minibatch entry reaches to the corresponding length.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.
            sample_ids(Variable): An `int64` tensor variable shaped `[batch_size]`.
                It is same as `sample_ids` returned by `sample()`.

        Returns:
            tuple: A tuple( :code:`(finished, next_inputs, next_states)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s],  and the tensor's shape is \
                `[batch_size, ...]`. `next_states` is identical to the input \
                argument `states`. `finished` is a `bool` Tensor with \
                shape `[batch_size]`.
        """
        # TODO: compatibility of int32 and int64
2078 2079 2080 2081 2082
        time = (
            tensor.cast(time, "int32")
            if convert_dtype(time.dtype) not in ["int32"]
            else time
        )
2083 2084 2085
        if self.sequence_length.dtype != time.dtype:
            self.sequence_length = tensor.cast(self.sequence_length, time.dtype)
        next_time = time + 1
2086
        finished = paddle.less_equal(self.sequence_length, next_time)
2087 2088 2089

        def _slice(x):  # TODO: use Variable.__getitem__
            axes = [0 if self.time_major else 1]
2090
            return paddle.squeeze(
2
201716010711 已提交
2091
                paddle.slice(
2092 2093
                    x, axes=axes, starts=[next_time], ends=[next_time + 1]
                ),
2094
                axis=axes,
2095
            )
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

        next_inputs = map_structure(_slice, self.inputs_)
        return finished, next_inputs, states


class GreedyEmbeddingHelper(DecodeHelper):
    """
    GreedyEmbeddingHelper is a subclass of DecodeHelper. It is a decoding helper
    uses the argmax of the output (treated as logits) and passes the results
    through an embedding layer to get inputs for the next decoding step.

    Examples:
        .. code-block:: python
2109

2110 2111 2112 2113 2114
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
2115

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
            trg_embeder = lambda x: fluid.embedding(
                x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
            output_layer = lambda x: layers.fc(x,
                                            size=10000,
                                            num_flatten_dims=len(x.shape) - 1,
                                            param_attr=fluid.ParamAttr(name=
                                                                    "output_w"),
                                            bias_attr=False)
            helper = layers.GreedyEmbeddingHelper(trg_embeder, start_tokens=0, end_token=1)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper, output_fn=output_layer)
            outputs = layers.dynamic_decode(
                decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
    """

    def __init__(self, embedding_fn, start_tokens, end_token):
2132
        r"""
2133 2134 2135
        Constructor of GreedyEmbeddingHelper.

        Parameters:
2136
            embedding_fn(callable): A functor to apply on the argmax results.
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
                Mostly it is an embedding layer to transform ids to embeddings.
                **Note that fluid.embedding should be used here rather than
                fluid.layers.embedding, since shape of ids is [batch_size].
                when using fluid.layers.embedding, must unsqueeze in embedding_fn.**
            start_tokens(Variable):  A `int64` tensor shaped `[batch_size]`,
                representing the start tokens.
            end_token(int): The end token id.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
        self.embedding_fn = embedding_fn
        self.start_tokens = start_tokens
2153 2154 2155
        self.end_token = tensor.fill_constant(
            shape=[1], dtype="int64", value=end_token
        )
2156 2157

    def initialize(self):
2158
        r"""
2159 2160
        GreedyEmbeddingHelper initialization produces inputs for the first decoding
        step by using `start_tokens` of the constructor, and gives initial
2161
        status telling whether each sequence in the batch is finished.
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
        It is the partial of the initialization of `BasicDecoder`.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_finished)` ). \
                `initial_inputs` is same as `start_tokens` of the constructor. \
                `initial_finished` is a `bool` tensor filled by False and has \
                the same shape as `start_tokens`.
        """
        # TODO: remove the restriction of force_cpu
        init_finished = tensor.fill_constant_batch_size_like(
            input=self.start_tokens,
            shape=[-1],
            dtype="bool",
            value=False,
2176 2177
            force_cpu=True,
        )
2178 2179 2180 2181
        init_inputs = self.embedding_fn(self.start_tokens)
        return init_inputs, init_finished

    def sample(self, time, outputs, states):
2182
        r"""
2183 2184 2185 2186 2187 2188 2189 2190
        Perform sampling by using `argmax` according to the `outputs`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
2191
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor with shape `[batch_size]`, representing \
                the sampled ids.
        """
        sample_ids = tensor.argmax(outputs, axis=-1)
        return sample_ids

    def next_inputs(self, time, outputs, states, sample_ids):
2203
        r"""
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        Generate inputs for the next decoding step by applying `embedding_fn`
        to `sample_ids`. Simultaneously, produce the states for next time step
        by directly using the input `states` and emit status telling whether
        each minibatch entry gets an `end_token` sample.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.
            sample_ids(Variable): An `int64` tensor variable shaped `[batch_size]`.
                It is same as `sample_ids` returned by `sample()`.

        Returns:
            tuple: A tuple( :code:`(finished, next_inputs, next_states)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s],  and the tensor's shape is \
                `[batch_size, ...]`. `next_states` is identical to the input \
                argument `states`. `finished` is a `bool` Tensor with \
                shape `[batch_size]`.
        """
2229
        finished = paddle.equal(sample_ids, self.end_token)
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
        next_inputs = self.embedding_fn(sample_ids)
        return finished, next_inputs, states


class SampleEmbeddingHelper(GreedyEmbeddingHelper):
    """
    SampleEmbeddingHelper is a subclass of GreedyEmbeddingHelper. It is a decoding
    helper uses sampling (from a distribution) instead of argmax of the output
    (treated as logits) and passes the results through an embedding layer to get
    inputs for the next decoding step.

    Examples:
        .. code-block:: python
2243

2244 2245 2246 2247 2248
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
            trg_embeder = lambda x: fluid.embedding(
                x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
            output_layer = lambda x: layers.fc(x,
                                            size=10000,
                                            num_flatten_dims=len(x.shape) - 1,
                                            param_attr=fluid.ParamAttr(name=
                                                                    "output_w"),
                                            bias_attr=False)
            helper = layers.SampleEmbeddingHelper(trg_embeder, start_tokens=0, end_token=1)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper, output_fn=output_layer)
            outputs = layers.dynamic_decode(
                decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
    """

2265 2266 2267 2268 2269 2270 2271 2272
    def __init__(
        self,
        embedding_fn,
        start_tokens,
        end_token,
        softmax_temperature=None,
        seed=None,
    ):
2273
        r"""
2274 2275 2276
        Constructor of SampleEmbeddingHelper.

        Parameters:
2277
            embedding_fn(callable): A functor to apply on the argmax results.
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
                Mostly it is an embedding layer to transform ids to embeddings.
                **Note that fluid.embedding should be used here rather than
                fluid.layers.embedding, since shape of ids is [batch_size].
                when using fluid.layers.embedding, must unsqueeze in embedding_fn.**
            start_tokens(Variable):  A `int64` tensor shaped `[batch_size]`,
                representing the start tokens.
            end_token(int): The end token id.
            softmax_temperature(float, optional): the value to divide the logits
                by before computing the softmax. Higher temperatures (above 1.0)
                lead to more random, while lower temperatures push the sampling
                distribution towards the argmax. It must be strictly greater than
                0. Defaults to None, meaning using a temperature valued 1.0.
            seed: (int, optional) The sampling seed. Defaults to None, meaning not
                to use fixed seed.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
2299
        super().__init__(embedding_fn, start_tokens, end_token)
2300 2301 2302 2303 2304 2305 2306
        self.softmax_temperature = (
            tensor.fill_constant(
                shape=[1], dtype="float32", value=softmax_temperature
            )
            if softmax_temperature is not None
            else None
        )
2307 2308 2309
        self.seed = seed

    def sample(self, time, outputs, states):
2310
        r"""
2311 2312 2313 2314 2315 2316 2317 2318 2319
        Perform sampling from a categorical distribution, and the distribution
        is computed by `softmax(outputs/softmax_temperature)`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
2320
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
2321 2322 2323 2324 2325 2326 2327
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor with shape `[batch_size]`, representing \
                the sampled ids.
        """
2328 2329 2330 2331 2332
        logits = (
            (outputs / self.softmax_temperature)
            if self.softmax_temperature is not None
            else outputs
        )
2333 2334 2335 2336 2337
        probs = nn.softmax(logits)
        # TODO: remove this stop_gradient. The stop_gradient of sample_ids can
        # not pass to probs, since sampling_id op does not have corresponding
        # grad op and thus can not pass.
        probs.stop_gradient = True
2338 2339 2340
        sample_ids = nn.sampling_id(
            probs, seed=self.seed, dtype=self.start_tokens.dtype
        )
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
        return sample_ids


class BasicDecoder(Decoder):
    """
    BasicDecoder is a subclass of Decoder and assembles a RNNCell and DecodeHelper
    instance as members, where the DecodeHelper helps to implement customed
    decoding strategies.. It performs one decoding step as following steps:

    1. Perform `cell_outputs, cell_states = cell.call(inputs, states)`
    to get outputs and new states from cell.

    2. Perform `sample_ids = helper.sample(time, cell_outputs, cell_states)`
    to sample ids as decoded results of the current time step.

    3. Perform `finished, next_inputs, next_states = helper.next_inputs(time,
    cell_outputs, cell_states, sample_ids)` to generate inputs, states and
    finished status for the next decoding step.

    Examples:
        .. code-block:: python
2362

2363 2364 2365 2366 2367
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
2368

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
            trg_embeder = lambda x: fluid.embedding(
                x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
            output_layer = lambda x: layers.fc(x,
                                            size=10000,
                                            num_flatten_dims=len(x.shape) - 1,
                                            param_attr=fluid.ParamAttr(name=
                                                                    "output_w"),
                                            bias_attr=False)
            helper = layers.SampleEmbeddingHelper(trg_embeder, start_tokens=0, end_token=1)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper, output_fn=output_layer)
            outputs = layers.dynamic_decode(
                decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
    """

    def __init__(self, cell, helper, output_fn=None):
        """
        Constructor of BasicDecoder.

        Parameters:
            cell(RNNCell): An instance of `RNNCell` or object with the same interface.
            helper(DecodeHelper): An instance of `DecodeHelper`.
            output_fn(optional): A callable to apply to the cell's output prior to
                sampling. Default None.
        """
        self.cell = cell
        self.helper = helper
        self.output_fn = output_fn

    def initialize(self, initial_cell_states):
2399
        r"""
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
        BasicDecoder initialization includes helper initialization and cell
        initialization, and cell initialization uses `initial_cell_states` as
        the result directly.

        Parameters:
            initial_cell_states(Variable): A (possibly nested structure of)
                tensor variable[s]. An argument provided by the caller `dynamic_decode`.

        Returns:
            tuple: A tuple( :code:(initial_inputs, initial_cell_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type. `initial_inputs` and `finished` are the results \
                of `helper.initialize()`, and `initial_cell_states` is same as \
                the input argument counterpart.
        """
        (initial_inputs, initial_finished) = self.helper.initialize()
        return initial_inputs, initial_cell_states, initial_finished

    class OutputWrapper(
2420 2421
        collections.namedtuple("OutputWrapper", ("cell_outputs", "sample_ids"))
    ):
2422 2423 2424 2425
        """
        The structure for the returned value `outputs` of `decoder.step`.
        A namedtuple includes cell_outputs, sample_ids as fields.
        """
2426

2427 2428 2429
        pass

    def step(self, time, inputs, states, **kwargs):
2430
        r"""
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
        Perform one decoding step as following steps:

        1. Perform `cell_outputs, cell_states = cell.call(inputs, states)`
        to get outputs and new states from cell.

        2. Perform `sample_ids = helper.sample(time, cell_outputs, cell_states)`
        to sample ids as decoded results of the current time step.

        3. Perform `finished, next_inputs, next_states = helper.next_inputs(time,
        cell_outputs, cell_states, sample_ids)` to generate inputs, states and
        finished status for the next decoding step.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            inputs(Variable): A tensor variable. It is same as `initial_inputs`
                returned by `initialize()` for the first decoding step and
                `next_inputs` returned by `step()` for the others.
            states(Variable): A structure of tensor variables.
                It is same as the `initial_cell_states` returned by `initialize()`
                for the first decoding step and `next_states` returned by
                `step()` for the others.
            **kwargs: Additional keyword arguments, provided by the caller
2454 2455
                `dynamic_decode`.

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
        Returns:
            tuple: A tuple( :code:`(outputs, next_states, next_inputs, finished)` ). \
                `outputs` is a namedtuple(including cell_outputs, sample_ids, \
                as fields) of tensor variables, where `cell_outputs` is the result \
                fof `cell.call()` and `sample_ids` is the result of `helper.sample()`. \
                `next_states` and `next_inputs` have the same structure, shape \
                and data type as the input arguments `states` and `inputs` separately. \
                `finished` is a `bool` tensor with shape `[batch_size]`.
        """
        cell_outputs, cell_states = self.cell(inputs, states, **kwargs)
        if self.output_fn is not None:
            cell_outputs = self.output_fn(cell_outputs)
2468 2469 2470
        sample_ids = self.helper.sample(
            time=time, outputs=cell_outputs, states=cell_states
        )
2471
        sample_ids.stop_gradient = True
2472 2473 2474 2475 2476 2477
        (finished, next_inputs, next_states) = self.helper.next_inputs(
            time=time,
            outputs=cell_outputs,
            states=cell_states,
            sample_ids=sample_ids,
        )
2478 2479
        outputs = self.OutputWrapper(cell_outputs, sample_ids)
        return (outputs, next_states, next_inputs, finished)
2480 2481


2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
def dynamic_lstm(
    input,
    size,
    h_0=None,
    c_0=None,
    param_attr=None,
    bias_attr=None,
    use_peepholes=True,
    is_reverse=False,
    gate_activation='sigmoid',
    cell_activation='tanh',
    candidate_activation='tanh',
    dtype='float32',
    name=None,
):
2497
    r"""
2498
	:api_attr: Static Graph
S
swtkiwi 已提交
2499

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
    **Note**:
        1. This OP only supports LoDTensor as inputs. If you need to deal with Tensor, please use :ref:`api_fluid_layers_lstm` .
        2. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.

    The implementation of this OP include diagonal/peephole connections.
    Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
    If you do not need peephole connections, please set use_peepholes to False .

    This OP computes each timestep as follows:

    .. math::
      i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
    .. math::
      f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
    .. math::
      o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
    .. math::
      \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
    .. math::
      c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
    .. math::
      h_t = o_t \odot tanh(c_t)

    The symbolic meanings in the formula are as follows:

    - :math:`x_{t}` represents the input at timestep :math:`t`
    - :math:`h_{t}` represents the hidden state at timestep :math:`t`
    - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
    - :math:`\widetilde{c_t}` represents the candidate cell state
    - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
    - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
    - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
    - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
    - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension

    Parameters:
        input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
        size (int): must be 4 * hidden_size.
        h_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
                       Data type is float32 or float64. If set to None, it will be a vector of all 0. Default: None.
        c_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
                       Data type is float32 or float64. If set to None, it will be a vector of all 0. `h_0` and `c_0` can be None but only at the same time. Default: None.
        param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
                              If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.

                              - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [hidden_size, 4*hidden_size].

        bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
                              Please refer to ref:`api_fluid_ParamAttr' . Default: None.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is [1, 4*hidden_size].
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is [1, 7*hidden_size].
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
        use_peepholes (bool, optional): Whether to use peephole connection or not. Default: True.
        is_reverse (bool, optional): Whether to calculate reverse LSTM. Default: False.
        gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default: "sigmoid".
        cell_activation (str, optional): The activation for cell output. Default: "tanh".
        candidate_activation (str, optional): The activation for candidate hidden state. Default: "tanh".
        dtype (str, optional): Data type, can be "float32" or "float64". Default: "float32".
        name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.

    Returns:
        tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :

            The hidden state and cell state of LSTM

                - hidden: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.
                - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.

    Examples:
        .. code-block:: python
2579

2580 2581 2582 2583
            import paddle.fluid as fluid
            emb_dim = 256
            vocab_size = 10000
            hidden_dim = 512
2584

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
            data = fluid.data(name='x', shape=[None], dtype='int64', lod_level=1)
            emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
                                           bias_attr=False)

            forward, cell = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
            forward.shape  # (-1, 512)
            cell.shape  # (-1, 512)
    """
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
    assert (
        _non_static_mode() is not True
    ), "please use lstm instead of dynamic_lstm in dygraph mode!"
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in dynamic_lstm."

    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'dynamic_lstm'
    )
2606 2607 2608

    check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_lstm')
    if isinstance(h_0, Variable):
2609 2610 2611
        check_variable_and_dtype(
            h_0, 'h_0', ['float32', 'float64'], 'dynamic_lstm'
        )
2612 2613 2614

    check_type(c_0, 'c_0', (Variable, type(None)), 'dynamic_lstm')
    if isinstance(c_0, Variable):
2615 2616 2617
        check_variable_and_dtype(
            c_0, 'c_0', ['float32', 'float64'], 'dynamic_lstm'
        )
2618

2619 2620
    helper = LayerHelper('lstm', **locals())
    size = size // 4
2621 2622 2623
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype
    )
2624 2625 2626
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
2627 2628 2629
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
    )
2630 2631 2632 2633 2634 2635 2636 2637

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
2638
        assert h_0.shape == (batch_size, size), (
2639
            'The shape of h0 should be (batch_size, %d)' % size
2640
        )
2641 2642
        inputs['H0'] = h_0
    if c_0:
2643
        assert c_0.shape == (batch_size, size), (
2644
            'The shape of c0 should be (batch_size, %d)' % size
2645
        )
2646 2647
        inputs['C0'] = c_0

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act,
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
        },
    )
2665 2666 2667
    return hidden, cell


2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
@deprecated(
    since='2.0.0',
    update_to='paddle.nn.LSTM',
    reason="This API may occur CUDNN errors.",
)
def lstm(
    input,
    init_h,
    init_c,
    max_len,
    hidden_size,
    num_layers,
    dropout_prob=0.0,
    is_bidirec=False,
    is_test=False,
    name=None,
    default_initializer=None,
    seed=-1,
):
2687
    r"""
2688
	:api_attr: Static Graph
S
swtkiwi 已提交
2689

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
    **Note**:
        This OP only supports running on GPU devices.

    This OP implements LSTM operation - `Hochreiter, S., & Schmidhuber, J. (1997) <http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf>`_ .

    The implementation of this OP does not include diagonal/peephole connections.
    Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
    If you need peephole connections, please use :ref:`api_fluid_layers_dynamic_lstm` .

    This OP computes each timestep as follows:

    .. math::
      i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
    .. math::
      f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
    .. math::
      o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
    .. math::
      \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
    .. math::
      c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
    .. math::
      h_t = o_t \odot tanh(c_t)

    The symbolic meanings in the formula are as follows:

    - :math:`x_{t}` represents the input at timestep :math:`t`
    - :math:`h_{t}` represents the hidden state at timestep :math:`t`
    - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
    - :math:`\widetilde{c_t}` represents the candidate cell state
    - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
    - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
    - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
    - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
    - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension

    Parameters:
        input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, 3-D Tensor of shape :math:`[batch\_size, seq\_len, input\_dim]` . Data type is float32 or float64
        init_h( :ref:`api_guide_Variable_en` ): The initial hidden state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
                       If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
G
GaoWei8 已提交
2730
        max_len (int): This parameter has no effect and will be discarded.
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
        init_c( :ref:`api_guide_Variable_en` ): The initial cell state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
                       If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
        hidden_size (int): hidden size of the LSTM.
        num_layers (int): total layers number of the LSTM.
        dropout_prob(float, optional): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers.
                             Default: 0.0.
        is_bidirec (bool, optional): If it is bidirectional. Default: False.
        is_test (bool, optional): If it is in test phrase. Default: False.
        name (str, optional): A name for this layer. If set None, the layer
                         will be named automatically. Default: None.
        default_initializer(Initializer, optional): Where use initializer to initialize the Weight
T
tianshuo78520a 已提交
2743
                         If set None, default initializer will be used. Default: None.
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
        seed(int, optional): Seed for dropout in LSTM, If it's -1, dropout will use random seed. Default: 1.


    Returns:
        tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ) :

                        Three tensors, rnn_out, last_h, last_c:

                        - rnn_out is result of LSTM hidden, shape is :math:`[seq\_len, batch\_size, hidden\_size]` \
                          if is_bidirec set to True, shape will be :math:`[seq\_len, batch\_size, hidden\_size*2]`
                        - last_h is the hidden state of the last step of LSTM \
                          shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
                          if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
                          if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`


    Examples:
        .. code-block:: python
2764

2765
            import paddle
2766 2767
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
2768
            paddle.enable_static()
2769 2770 2771 2772 2773

            emb_dim = 256
            vocab_size = 10000
            data = fluid.data(name='x', shape=[None, 100], dtype='int64')
            emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
2774
            batch_size = 100
2775 2776 2777 2778
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
2779
            max_len = 12
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
            rnn_out.shape  # (-1, 100, 150)
            last_h.shape  # (1, 20, 150)
            last_c.shape  # (1, 20, 150)
    """

    helper = LayerHelper('cudnn_lstm', **locals())
X
Xing Wu 已提交
2791 2792 2793 2794 2795 2796
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'lstm')
    check_variable_and_dtype(init_h, 'init_h', ['float32', 'float64'], 'lstm')
    check_variable_and_dtype(init_c, 'init_c', ['float32', 'float64'], 'lstm')
    check_type(max_len, 'max_len', (int), 'lstm')
    check_type(hidden_size, 'hidden_size', (int), 'lstm')
    check_type(num_layers, 'num_layers', (int), 'lstm')
2797 2798 2799 2800
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
    weight_size = 0
G
GaoWei8 已提交
2801 2802
    num_dirrection = 2 if is_bidirec == True else 1

2803 2804
    for i in range(num_layers):
        if i == 0:
G
GaoWei8 已提交
2805
            input_weight_size = (input_size * hidden_size) * 4 * num_dirrection
2806
        else:
G
GaoWei8 已提交
2807 2808
            input_weight_size = (hidden_size * hidden_size) * 4 * num_dirrection
        hidden_weight_size = (hidden_size * hidden_size) * 4 * num_dirrection
2809

G
GaoWei8 已提交
2810 2811
        weight_size += input_weight_size + hidden_weight_size
        weight_size += hidden_size * 8 * num_dirrection
2812

2813 2814 2815 2816 2817 2818
    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer,
    )
2819 2820 2821 2822

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)
G
GaoWei8 已提交
2823
    reserve = helper.create_variable_for_type_inference(
2824 2825
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
G
GaoWei8 已提交
2826
    state_out = helper.create_variable_for_type_inference(
2827 2828
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
G
GaoWei8 已提交
2829
    state_out.persistable = True
2830

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
        },
        outputs={
            'Out': out,
            'LastH': last_h,
            'LastC': last_c,
            'Reserve': reserve,
            'StateOut': state_out,
        },
        attrs={
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        },
    )
2856 2857 2858
    return out, last_h, last_c


2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
def dynamic_lstmp(
    input,
    size,
    proj_size,
    param_attr=None,
    bias_attr=None,
    use_peepholes=True,
    is_reverse=False,
    gate_activation='sigmoid',
    cell_activation='tanh',
    candidate_activation='tanh',
    proj_activation='tanh',
    dtype='float32',
    name=None,
    h_0=None,
    c_0=None,
    cell_clip=None,
    proj_clip=None,
):
2878
    r"""
2879
	:api_attr: Static Graph
S
swtkiwi 已提交
2880

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
    **Note**:
        1. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.

    This OP implements the LSTMP (LSTM Projected) layer.
    The LSTMP layer has a separate linear mapping layer behind the LSTM layer. -- `Sak, H., Senior, A., & Beaufays, F. (2014) <https://ai.google/research/pubs/pub43905.pdf>`_ .

    Compared with the standard LSTM layer, LSTMP has an additional linear mapping layer,
    which is used to map from the original hidden state :math:`h_t` to the lower dimensional state :math:`r_t` .
    This reduces the total number of parameters and computational complexity, especially when the output unit is relatively large.

    The default implementation of the OP contains diagonal/peephole connections,
    please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
    If you need to disable the peephole connections, set use_peepholes to False.

    This OP computes each timestep as follows:

    .. math::
      i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
    .. math::
          f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
    .. math::
          o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_{t-1} + b_o)
    .. math::
          \widetilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
    .. math::
          c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
    .. math::
          h_t = o_t \odot act_h(c_t)
    .. math::
          r_t = \overline{act_h}(W_{rh}h_t)

    The symbolic meanings in the formula are as follows:

    - :math:`x_{t}` represents the input at timestep :math:`t`
    - :math:`h_{t}` represents the hidden state at timestep :math:`t`
    - :math:`r_{t}` : represents the state of the projected output of the hidden state :math:`h_{t}`
    - :math:`h_{t-1}, c_{t-1}, r_{t-1}` represent the hidden state, cell state and projected output at timestep :math:`t-1` , respectively
    - :math:`\widetilde{c_t}` represents the candidate cell state
    - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
    - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
    - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
    - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
    - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension

    Parameters:
        input( :ref:`api_guide_Variable_en` ): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence.
                         It is a multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
        size(int): must be 4 * hidden_size.
        proj_size(int): The size of projection output.
        param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
                              If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.

                              - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [P, 4*hidden_size] , where P is the projection size.
                              - Projection weight  = :math:`\{ W_{rh} \}` , the shape is [hidden_size, P].

        bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
                              Please refer to ref:`api_fluid_ParamAttr' . Default: None.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is [1, 4*hidden_size].
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is [1, 7*hidden_size].

        use_peepholes (bool, optional): Whether to use peephole connection or not. Default True.
        is_reverse (bool, optional): Whether to calculate reverse LSTM. Default False.
        gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default "sigmoid".
        cell_activation (str, optional): The activation for cell output. Default "tanh".
        candidate_activation (str, optional): The activation for candidate hidden state. Default "tanh".
        proj_activation(str, optional): The activation for projection output. Default "tanh".
        dtype (str, optional): Data type, can be "float32" or "float64". Default "float32".
        name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.
        h_0( :ref:`api_guide_Variable` , optional): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size. Default: None.
        c_0( :ref:`api_guide_Variable` , optional): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size.
                       `h_0` and `c_0` can be None but only at the same time. Default: None.
        cell_clip(float, optional): If not None, the cell state is clipped
                             by this value prior to the cell output activation. Default: None.
        proj_clip(float, optional): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`. Default: None.

    Returns:
        tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :

                The hidden state and cell state of LSTMP

                - hidden: LoDTensor with shape of :math:`[T, P]` , and its lod and dtype is the same as the input.
                - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            dict_dim, emb_dim = 128, 64
            data = fluid.data(name='sequence', shape=[None], dtype='int64', lod_level=1)
            emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim, proj_dim = 512, 256
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
                                    act=None, bias_attr=None)
            proj_out, last_c = fluid.layers.dynamic_lstmp(input=fc_out,
                                                    size=hidden_dim * 4,
                                                    proj_size=proj_dim,
                                                    use_peepholes=False,
                                                    is_reverse=True,
                                                    cell_activation="tanh",
                                                    proj_activation="tanh")
            proj_out.shape  # (-1, 256)
            last_c.shape  # (-1, 512)
    """

3000 3001 3002
    assert (
        _non_static_mode() is not True
    ), "please use lstm instead of dynamic_lstmp in dygraph mode!"
3003

3004 3005 3006
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in dynamic_lstmp."
3007

3008 3009 3010
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'dynamic_lstmp'
    )
3011 3012 3013

    check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_lstmp')
    if isinstance(h_0, Variable):
3014 3015 3016
        check_variable_and_dtype(
            h_0, 'h_0', ['float32', 'float64'], 'dynamic_lstmp'
        )
3017 3018 3019

    check_type(c_0, 'c_0', (Variable, type(None)), 'dynamic_lstmp')
    if isinstance(c_0, Variable):
3020 3021 3022
        check_variable_and_dtype(
            c_0, 'c_0', ['float32', 'float64'], 'dynamic_lstmp'
        )
3023

3024 3025
    helper = LayerHelper('lstmp', **locals())
    size = size // 4
3026 3027 3028 3029 3030 3031
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype
    )
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype
    )
3032 3033 3034
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
3035 3036 3037
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
    )
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048

    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
3049
        'Bias': bias,
3050 3051 3052
    }
    batch_size = input.shape[0]
    if h_0:
3053
        assert h_0.shape == (batch_size, proj_size), (
3054
            'The shape of h0 should be (batch_size, %d)' % proj_size
3055
        )
3056 3057
        inputs['H0'] = h_0
    if c_0:
3058
        assert c_0.shape == (batch_size, size), (
3059
            'The shape of c0 should be (batch_size, %d)' % size
3060
        )
3061 3062 3063
        inputs['C0'] = c_0

    if cell_clip:
T
tianshuo78520a 已提交
3064
        assert cell_clip >= 0, "cell_clip should not be negative."
3065
    if proj_clip:
T
tianshuo78520a 已提交
3066
        assert proj_clip >= 0, "proj_clip should not be negative."
3067

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
    helper.append_op(
        type='lstmp',
        inputs=inputs,
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act,
        },
        attrs={
            'use_peepholes': use_peepholes,
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation,
        },
    )
3089 3090 3091
    return projection, cell


3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
def dynamic_gru(
    input,
    size,
    param_attr=None,
    bias_attr=None,
    is_reverse=False,
    gate_activation='sigmoid',
    candidate_activation='tanh',
    h_0=None,
    origin_mode=False,
):
3103
    r"""
3104
	:api_attr: Static Graph
S
swtkiwi 已提交
3105

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
    **Note: The input type of this must be LoDTensor. If the input type to be
    processed is Tensor, use** :ref:`api_fluid_layers_StaticRNN` .

    This operator is used to perform the calculations for a single layer of
    Gated Recurrent Unit (GRU) on full sequences step by step. The calculations
    in one time step support these two modes:

    If ``origin_mode`` is True, then the formula used is from paper
    `Learning Phrase Representations using RNN Encoder Decoder for Statistical
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}


    if ``origin_mode`` is False, then the formula used is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling  <https://arxiv.org/pdf/1412.3555.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}

    :math:`x_t` is the input of current time step, but it is not from ``input`` .
    This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
    **Note** thus a fully-connect layer whose size is 3 times of ``size`` should
    be used before this operator, and the output should be used as ``input`` here.
3146
    :math:`h_{t-1}` is the hidden state from previous time step.
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
    :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
    update gate, reset gate, candidate hidden and hidden output separately.
    :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
    the weight matrix and bias used in update gate, reset gate, candidate hidden
    calculations. For implementation, the three weight matrix are merged into a
    tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
    a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
    hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
    are concatenated with shape :math:`[D, D  \\times 2]` lying on the first part,
    and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .


    Args:
        input(Variable): A LoDTensor whose lod level is 1, representing the input
            after linear projection. Its shape should be :math:`[T, D \\times 3]` ,
            where :math:`T` stands for the total sequence lengths in this mini-batch,
            :math:`D` for the hidden size. The data type should be float32 or float64.
        size(int): Indicate the hidden size.
        param_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        is_reverse(bool, optional): Whether to compute in the reversed order of
            input sequences. Default False.
T
tianshuo78520a 已提交
3173
        gate_activation(str, optional): The activation function corresponding to
3174 3175
            :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "sigmoid".
T
tianshuo78520a 已提交
3176
        candidate_activation(str, optional): The activation function corresponding to
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
            :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "tanh".
        h_0 (Variable, optional): A Tensor representing the initial hidden state.
            It not provided, the default initial hidden state is 0. The shape is
            :math:`[N, D]` , where :math:`N` is the number of sequences in the
            mini-batch, :math:`D` for the hidden size. The data type should be
            same as ``input`` . Default None.

    Returns:
        Variable: A LoDTensor whose lod level is 1 and shape is :math:`[T, D]` , \
            where :math:`T` stands for the total sequence lengths in this mini-batch \
            :math:`D` for the hidden size. It represents GRU transformed sequence output, \
            and has the same lod and data type with ``input`` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.data(name='sequence',
                      shape=[None],
                      dtype='int64',
                      lod_level=1)
            emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
    """

3208 3209 3210
    assert (
        _non_static_mode() is not True
    ), "please use gru instead of dynamic_gru in dygraph mode!"
3211

3212 3213 3214
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'dynamic_gru'
    )
3215 3216 3217

    check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_gru')
    if isinstance(h_0, Variable):
3218 3219 3220
        check_variable_and_dtype(
            h_0, 'h_0', ['float32', 'float64'], 'dynamic_gru'
        )
3221

3222 3223 3224
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

3225 3226 3227 3228 3229 3230
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True
    )
3231 3232 3233
    batch_size = input.shape[0]
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0:
3234 3235 3236
        assert h_0.shape == (batch_size, size), (
            'The shape of h0 should be(batch_size, %d)' % size
        )
3237 3238 3239 3240 3241 3242 3243
        inputs['H0'] = h_0

    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden,
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation,
            'origin_mode': origin_mode,
        },
    )
3260 3261 3262
    return hidden


3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
def gru_unit(
    input,
    hidden,
    size,
    param_attr=None,
    bias_attr=None,
    activation='tanh',
    gate_activation='sigmoid',
    origin_mode=False,
):
3273
    r"""
3274
	:api_attr: Static Graph
S
swtkiwi 已提交
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
    Gated Recurrent Unit (GRU) RNN cell. This operator performs GRU calculations for
    one time step and it supports these two modes:

    If ``origin_mode`` is True, then the formula used is from paper
    `Learning Phrase Representations using RNN Encoder Decoder for Statistical
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}


    if ``origin_mode`` is False, then the formula used is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling  <https://arxiv.org/pdf/1412.3555.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}

    :math:`x_t` is the input of current time step, but it is not ``input`` .
    This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
    **Note** thus a fully-connect layer whose size is 3 times of GRU hidden size should
    be used before this operator, and the output should be used as ``input`` here.
3312
    :math:`h_{t-1}` is the hidden state from previous time step.
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
    :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
    update gate, reset gate, candidate hidden and hidden output separately.
    :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
    the weight matrix and bias used in update gate, reset gate, candidate hidden
    calculations. For implementation, the three weight matrix are merged into a
    tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
    a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
    hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
    are concatenated with shape :math:`[D, D  \\times 2]` lying on the first part,
    and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .


    Args:
        input(Variable): A 2D Tensor representing the input after linear projection
            after linear projection. Its shape should be :math:`[N, D \\times 3]` ,
            where :math:`N` stands for batch size, :math:`D` for the hidden size.
            The data type should be float32 or float64.
        hidden(Variable): A 2D Tensor representing the hidden state from previous step.
            Its shape should be :math:`[N, D]` , where :math:`N` stands for batch size,
            :math:`D` for the hidden size. The data type should be same as ``input`` .
        size(int): Indicate the hidden size.
        param_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
T
tianshuo78520a 已提交
3340
        activation(str, optional): The activation function corresponding to
3341 3342
            :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "tanh".
T
tianshuo78520a 已提交
3343
        gate_activation(str, optional): The activation function corresponding to
3344 3345 3346 3347 3348 3349
            :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "sigmoid".

    Returns:
        tuple: The tuple contains three Tensor variables with the same data type \
            as ``input`` . They represent the hidden state for next time step ( :math:`h_t` ), \
T
tianshuo78520a 已提交
3350
            reset previous hidden state ( :math:`r_t \odot h_{t-1}` ), and the \
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
            concatenation of :math:`h_t, r_t, \\tilde{h_t}` . And they have shape \
            :math:`[N, D]` , :math:`[N, D]` , :math:`[N, D \times 3]` separately. \
            Usually only the hidden state for next time step ( :math:`h_t` ) is used \
            as output and state, the other two are intermediate results of calculations.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.data(name='step_data', shape=[None], dtype='int64')
            emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.data(
                name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)

    """
X
Xing Wu 已提交
3373
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'gru_unit')
3374 3375 3376
    check_variable_and_dtype(
        hidden, 'hidden', ['float32', 'float64'], 'gru_unit'
    )
X
Xing Wu 已提交
3377
    check_type(size, 'size', (int), 'gru_unit')
3378 3379 3380 3381
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
3382 3383
        relu=3,
    )
3384 3385 3386 3387 3388 3389 3390 3391
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size // 3

    # create weight
3392 3393 3394
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype
    )
3395 3396 3397 3398 3399 3400 3401 3402

    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
    # create bias
    if helper.bias_attr:
        bias_size = [1, 3 * size]
3403 3404 3405
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
        inputs['Bias'] = bias

    helper.append_op(
        type='gru_unit',
        inputs=inputs,
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
3419 3420 3421
            'origin_mode': origin_mode,
        },
    )
3422 3423 3424 3425

    return updated_hidden, reset_hidden_pre, gate


3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
def beam_search(
    pre_ids,
    pre_scores,
    ids,
    scores,
    beam_size,
    end_id,
    level=0,
    is_accumulated=True,
    name=None,
    return_parent_idx=False,
):
3438
    r"""
S
swtkiwi 已提交
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.

    **This operator only supports LoDTensor.** It is used after finishing
    scores calculation to perform beam search for one time step. Specifically,
    after ``ids`` and ``scores`` have been produced, it selects the top-K
    ( `k` is ``beam_size`` ) candidate word ids of current step from ``ids``
T
tianshuo78520a 已提交
3450
    according to the corresponding ``scores``. Additionally, ``pre_id`` and
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
    ``pre_scores`` are the output of `beam_search` at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if ``is_accumulated`` is True, the ``scores`` passed in should
    be accumulated scores. Otherwise, the ``scores`` are
    considered as the probabilities of single step and would be transformed to
    the log field and added up with ``pre_scores`` for final scores in this
    operator. Length penalty should be done with extra operators before calculating
    the accumulated scores if needed.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py

    Args:
        pre_ids(Variable): A LodTensor variable (lod level is 2), representing
            the selected ids of previous step. It is the output of beam_search
            at previous step. Its shape is `[batch_size, 1]` and its lod is
            `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step. The data type should be int64.
        pre_scores(Variable): A LodTensor variable has the same shape and lod
            with ``pre_ids`` , representing the accumulated scores corresponding
            to the selected ids of previous step. It is the output of
X
Xing Wu 已提交
3474
            beam_search at previous step. The data type should be float32 or float64.
3475 3476 3477 3478 3479
        ids(Variable|None): A LodTensor variable containing the candidates ids.
            It has the same lod with ``pre_ids`` and its shape should be
            `[batch_size * beam_size, K]`, where `K` supposed to be greater than
            ``beam_size`` and the first dimension size (decrease as samples reach
            to the end) should be same as that of ``pre_ids`` . The data type
T
tianshuo78520a 已提交
3480
            should be int64. It can be None, which use index in ``scores`` as
3481 3482 3483
            ids.
        scores(Variable): A LodTensor variable containing the accumulated
            scores corresponding to ``ids`` . Both its shape and lod are same as
X
Xing Wu 已提交
3484
            those of ``ids`` . The data type should be float32 or float64.
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int): **It can be ignored and mustn't change currently.**
            The 2 level lod used in this operator has the following
            meaning: The first level describes how many beams each sample has,
            which would change to 0 when beams of the sample all end (batch reduce);
            The second level describes how many times each beam is selected.
            Default 0, which shouldn't be changed currently.
        is_accumulated(bool): Whether the input ``score`` is accumulated scores.
            Default True.
3495 3496
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
3497 3498
            None by default.
        return_parent_idx(bool, optional): Whether to return an extra Tensor variable
T
tianshuo78520a 已提交
3499
            in output, which stores the selected ids' parent index in
3500 3501 3502 3503 3504 3505 3506 3507
            ``pre_ids`` and can be used to update RNN's states by gather operator.
            Default False.

    Returns:
        tuple: The tuple contains two or three LodTensor variables. The two LodTensor, \
            representing the selected ids and the corresponding accumulated scores of \
            current step, have the same shape `[batch_size, beam_size]` and lod with 2 levels, \
            and have data types int64 and float32. If ``return_parent_idx`` is True, \
T
tianshuo78520a 已提交
3508
            an extra Tensor variable preserving the selected ids' parent index \
3509 3510 3511 3512 3513 3514 3515
            is included, whose shape is `[batch_size * beam_size]` and data type \
            is int64.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
3516 3517
            import paddle
            paddle.enable_static()
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            beam_size = 4
            end_id = 1
            pre_ids = fluid.data(
                name='pre_id', shape=[None, 1], lod_level=2, dtype='int64')
            pre_scores = fluid.data(
                name='pre_scores', shape=[None, 1], lod_level=2, dtype='float32')
            probs = fluid.data(
                name='probs', shape=[None, 10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
3532 3533
                x=paddle.log(x=topk_scores),
                y=paddle.reshape(pre_scores, shape=[-1]),
3534 3535 3536 3537 3538 3539 3540 3541 3542
                axis=0)
            selected_ids, selected_scores = fluid.layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
3543
    check_variable_and_dtype(pre_ids, 'pre_ids', ['int64'], 'beam_search')
3544 3545 3546
    check_variable_and_dtype(
        pre_scores, 'pre_scores', ['float32', 'float64'], 'beam_search'
    )
3547
    check_type(ids, 'ids', (Variable, type(None)), 'beam_search')
3548 3549 3550
    check_variable_and_dtype(
        scores, 'scores', ['float32', 'float64'], 'beam_search'
    )
3551 3552 3553 3554 3555 3556 3557 3558 3559
    helper = LayerHelper('beam_search', **locals())
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids

    selected_scores = helper.create_variable_for_type_inference(
3560 3561
        dtype=score_type
    )
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")

    helper.append_op(
        type='beam_search',
        inputs=inputs,
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
3575
            'parent_idx': parent_idx,
3576 3577 3578 3579 3580 3581 3582
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
            'is_accumulated': is_accumulated,
3583 3584
        },
    )
3585 3586 3587 3588 3589 3590 3591
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores


def beam_search_decode(ids, scores, beam_size, end_id, name=None):
3592
    r"""
S
swtkiwi 已提交
3593

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
    This operator is used after beam search has completed. It constructs the
    full predicted sequences for each sample by walking back along the search
    paths stored in lod of ``ids`` . The result sequences are stored in a
    LoDTensor, which uses the following way to parse:

    .. code-block:: text

        If lod = [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]

        The first level of lod stands for: There are 2 samples each having 3
        (beam width) predicted sequence.

        The second level of lod stands for: The lengths of the first sample's
        3 predicted sequences are 12, 12, 16; The lengths of the second sample's
        3 predicted sequences are 14, 13, 15.


    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py

    Args:
        ids(Variable): The LoDTensorArray variable containing the selected ids
            of all steps. Each LoDTensor in it has int64 data type and 2 level
            lod which can be used to get the search paths.
        scores(Variable): The LodTensorArray variable containing the accumulated
            scores corresponding to selected ids of all steps. It has the same size
            as ``ids`` . Each LoDTensor in it has the same shape and lod as the
            counterpart in ``ids`` , and has a float32 data type.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
3624 3625
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
3626 3627 3628 3629
            None by default.

    Returns:
        tuple: The tuple contains two LodTensor variables. The two LodTensor, \
T
tianshuo78520a 已提交
3630
            containing the full sequences of ids and the corresponding accumulated \
3631 3632 3633 3634 3635 3636 3637 3638
            scores, have the same shape flattened to 1D and have the same 2 level \
            lod. The lod can be used to get how many predicted sequences each sample \
            has and how many ids each predicted sequence has.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
3639 3640
            import paddle
            paddle.enable_static()
3641 3642 3643 3644 3645 3646 3647
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
3648
    check_variable_and_dtype(ids, 'ids', ['int64'], 'beam_search_encode')
3649 3650 3651
    check_variable_and_dtype(
        scores, 'scores', ['float32'], 'beam_search_encode'
    )
3652 3653
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
3654
    sentence_scores = helper.create_variable_for_type_inference(
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
        dtype=scores.dtype
    )

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids, "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores,
        },
        attrs={"beam_size": beam_size, "end_id": end_id},
    )
3667 3668 3669 3670

    return sentence_ids, sentence_scores


3671 3672 3673 3674 3675 3676 3677 3678 3679
def lstm_unit(
    x_t,
    hidden_t_prev,
    cell_t_prev,
    forget_bias=0.0,
    param_attr=None,
    bias_attr=None,
    name=None,
):
3680
    r"""
3681
	:api_attr: Static Graph
S
swtkiwi 已提交
3682

3683 3684 3685 3686 3687 3688
    Long-Short Term Memory (LSTM) RNN cell. This operator performs LSTM calculations for
    one time step, whose implementation is based on calculations described in `RECURRENT
    NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_  .

    We add forget_bias to the biases of the forget gate in order to
    reduce the scale of forgetting. The formula is as follows:
3689

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
    .. math::

        i_{t} & = \sigma(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = \sigma(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} tanh (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = \sigma(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} tanh (c_{t})

    :math:`x_{t}` stands for ``x_t`` , corresponding to the input of current time step;
    :math:`h_{t-1}` and :math:`c_{t-1}` correspond to ``hidden_t_prev`` and ``cell_t_prev`` ,
    representing the output of from previous time step.
    :math:`i_{t}, f_{t}, c_{t}, o_{t}, h_{t}` are input gate, forget gate, cell, output gate
    and hidden calculation.

    Args:
        x_t(Variable): A 2D Tensor representing the input of current time step.
            Its shape should be :math:`[N, M]` , where :math:`N` stands for batch
            size, :math:`M` for the feature size of input. The data type should
            be float32 or float64.
        hidden_t_prev(Variable): A 2D Tensor representing the hidden value from
            previous step. Its shape should be :math:`[N, D]` , where :math:`N`
            stands for batch size, :math:`D` for the hidden size. The data type
            should be same as ``x_t`` .
        cell_t_prev(Variable): A 2D Tensor representing the cell value from
            previous step. It has the same shape and data type with ``hidden_t_prev`` .
        forget_bias (float, optional): :math:`forget\\_bias` added to the biases
            of the forget gate. Default 0.
        param_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
3727 3728
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
            None by default.

    Returns:
        tuple: The tuple contains two Tensor variables with the same shape and \
            data type with ``hidden_t_prev`` , representing the hidden value and \
            cell value which correspond to :math:`h_{t}` and :math:`c_{t}` in \
            the formula.

    Raises:
        ValueError: Rank of x_t must be 2.
        ValueError: Rank of hidden_t_prev must be 2.
        ValueError: Rank of cell_t_prev must be 2.
        ValueError: The 1st dimensions of x_t, hidden_t_prev and cell_t_prev must be the same.
        ValueError: The 2nd dimensions of hidden_t_prev and cell_t_prev must be the same.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.data(name='step_data', shape=[None], dtype='int64')
            x = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.data(
                name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
            pre_cell = fluid.data(
                name='pre_cell', shape=[None, hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())
X
Xing Wu 已提交
3763
    check_variable_and_dtype(x_t, 'x_t', ['float32', 'float64'], 'lstm_unit')
3764 3765 3766 3767 3768 3769
    check_variable_and_dtype(
        hidden_t_prev, 'hidden_t_prev', ['float32', 'float64'], 'lstm_unit'
    )
    check_variable_and_dtype(
        cell_t_prev, 'cell_t_prev', ['float32', 'float64'], 'lstm_unit'
    )
3770 3771 3772 3773 3774 3775 3776 3777 3778
    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

3779 3780 3781 3782 3783 3784 3785 3786
    if (
        x_t.shape[0] != hidden_t_prev.shape[0]
        or x_t.shape[0] != cell_t_prev.shape[0]
    ):
        raise ValueError(
            "The 1st dimensions of x_t, hidden_t_prev and "
            "cell_t_prev must be the same."
        )
3787 3788

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
3789 3790 3791 3792
        raise ValueError(
            "The 2nd dimensions of hidden_t_prev and "
            "cell_t_prev must be the same."
        )
3793 3794 3795 3796 3797 3798

    if bias_attr is None:
        bias_attr = ParamAttr()

    size = cell_t_prev.shape[1]
    concat_out = nn.concat(input=[x_t, hidden_t_prev], axis=1)
3799 3800 3801 3802 3803 3804
    fc_out = nn.fc(
        input=concat_out,
        size=4 * size,
        param_attr=param_attr,
        bias_attr=bias_attr,
    )
3805 3806 3807 3808
    dtype = x_t.dtype
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)

3809 3810 3811 3812 3813 3814
    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out, "C_prev": cell_t_prev},
        outputs={"C": c, "H": h},
        attrs={"forget_bias": forget_bias},
    )
3815 3816

    return h, c