concat_op.h 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <string>
18
#include <utility>
19
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
C
chengduo 已提交
21
#include "paddle/fluid/operators/math/concat_and_split.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/strided_memcpy.h"
23
#include "paddle/fluid/operators/utils.h"
24

25 26 27
#include "paddle/pten/kernels/concat_kernel.h"
#include "paddle/pten/kernels/funcs/concat_funcs.h"

28 29 30
namespace paddle {
namespace operators {

31
static inline int64_t ComputeAxis(int64_t axis, int64_t rank) {
32 33 34 35 36
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank, true,
      platform::errors::InvalidArgument(
          "The axis is expected to be in range of [%d, %d), but got %d", -rank,
          rank, axis));
37 38 39 40 41 42
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

Q
QI JUN 已提交
43
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
44
class ConcatKernel : public framework::OpKernel<T> {
45 46
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
47 48
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
49 50 51
    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    auto axis = ctx.Attr<int>("axis");
    bool need_resize_out_dims = false;
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
      need_resize_out_dims = true;
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));

    if (need_resize_out_dims) {
      const size_t n = ins.size();
      std::vector<framework::DDim> ins_dims(n);
      for (size_t i = 0; i < n; i++) {
        ins_dims[i] = ins[i]->dims();
      }

69 70
      framework::DDim out_dims =
          pten::funcs::ComputeAndCheckShape(true, ins_dims, axis);
71 72
      out->Resize(out_dims);
    }
Y
Yancey1989 已提交
73 74
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
C
chengduoZH 已提交
75

76 77 78 79 80
    // call new kernel
    auto& dev_ctx = ctx.device_context<DeviceContext>();
    std::vector<pten::DenseTensor> pt_ins;
    for (auto& in : ins) {
      pt_ins.push_back(*in);
81 82
    }

83
    pten::ConcatKernel<T>(dev_ctx, pt_ins, axis, out);
84 85 86
  }
};

Q
QI JUN 已提交
87
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
88
class ConcatGradKernel : public framework::OpKernel<T> {
89 90
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
Q
qiaolongfei 已提交
91 92
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
93
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
H
hong 已提交
94
    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
95 96 97 98 99 100 101 102 103 104 105 106
    auto outs =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));

    {
      auto dx = outs;
      auto x = ins;
      for (size_t i = 0; i < dx.size(); ++i) {
        if (dx[i] != nullptr) {
          dx[i]->set_lod(x[i]->lod());
        }
      }
    }
107 108 109
    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));
Y
Yancey1989 已提交
110

111 112 113 114 115 116 117
    auto axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
Q
qiaolongfei 已提交
118 119 120
    // get output tensor that the name is not kEmptyVarName
    std::vector<framework::Tensor*> outputs;
    for (size_t j = 0; j < outs.size(); ++j) {
121 122
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
Q
qiaolongfei 已提交
123 124 125 126 127 128
        outs[j]->mutable_data<T>(ctx.GetPlace());
        outputs.push_back(outs[j]);
      } else {
        outputs.push_back(nullptr);
      }
    }
C
chengduo 已提交
129
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
Q
qiaolongfei 已提交
130

C
chengduoZH 已提交
131 132
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && outs.size() < 10) {
C
chengduo 已提交
133 134 135
      std::vector<const framework::Tensor*> ref_shape;
      ref_shape.insert(ref_shape.begin(), ins.begin(), ins.end());
      StridedMemcpyWithAxis0<T>(dev_ctx, *out_grad, ref_shape, &outputs);
C
chengduoZH 已提交
136
    } else {
C
chengduo 已提交
137 138 139
      math::SplitFunctor<DeviceContext, T> split_functor;
      split_functor(dev_ctx, *out_grad, ctx.MultiInput<framework::Tensor>("X"),
                    static_cast<int>(axis), &outputs);
C
chengduoZH 已提交
140
    }
141 142 143 144 145
  }
};

}  // namespace operators
}  // namespace paddle