python_api.html 49.0 KB
Newer Older
1 2


3 4


5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: Python API &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
33

34 35 36 37 38
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 
39 40 41 42 43 44 45 46 47 48
<script>
var _hmt = _hmt || [];
(function() {
  var hm = document.createElement("script");
  hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
  var s = document.getElementsByTagName("script")[0]; 
  s.parentNode.insertBefore(hm, s);
})();
</script>

49 50 51 52 53 54 55 56

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

57 58 59 60 61 62 63 64 65 66 67 68 69
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../index_cn.html" class="icon icon-home"> PaddlePaddle
          

          
70 71
          </a>

72 73 74 75 76 77
          
            
            
          

          
78 79 80 81 82 83
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
84
</div>
85 86

          
87 88 89 90
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
<nav class="doc-menu-vertical" role="navigation">

<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中启动训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_cn.html">Kubernetes on AWS</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_cn.html">RNN模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_cn.html">如何贡献文档</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
154 155
</ul>

156 157
</nav>

158 159
        </div>
      </div>
160 161
    </nav>

162
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
163

164 165 166 167 168
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../index_cn.html">PaddlePaddle</a>
      </nav>
169 170


171 172 173 174
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
175

176
 
177 178 179 180 181



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
182
    <li><a href="../index_cn.html">Docs</a> &raquo;</li>
183 184
      
    <li>Design Doc: Python API</li>
185 186 187 188 189 190 191
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../_sources/design/python_api.md.txt" rel="nofollow"> View page source</a>
          
        
      </li>
192
  </ul>
193
  <hr/>
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-python-api">
<span id="design-doc-python-api"></span><h1>Design Doc: Python API<a class="headerlink" href="#design-doc-python-api" title="永久链接至标题"></a></h1>
<p>Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program.</p>
<p>| Python classes | Protobuf messages |
| &#8212; | &#8212; |
| Program | ProgramDesc |
| Block | BlockDesc |
| Operator | OpDesc |
| Variable | VarDesc |</p>
<p>Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages.</p>
<div class="section" id="core-concepts">
<span id="core-concepts"></span><h2>Core Concepts<a class="headerlink" href="#core-concepts" title="永久链接至标题"></a></h2>
<div class="section" id="program">
<span id="program"></span><h3>Program<a class="headerlink" href="#program" title="永久链接至标题"></a></h3>
212 213
<p>A <code class="docutils literal"><span class="pre">ProgramDesc</span></code> describes a <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md">DL program</a>, which is composed of an array of <code class="docutils literal"><span class="pre">BlockDesc</span></code>s.  The <code class="docutils literal"><span class="pre">BlockDesc</span></code>s in a <code class="docutils literal"><span class="pre">ProgramDesc</span></code> can have a tree-like hierarchical structure. However, the <code class="docutils literal"><span class="pre">ProgramDesc</span></code> onlys stores a flattened array of <code class="docutils literal"><span class="pre">BlockDesc</span></code>s. A <code class="docutils literal"><span class="pre">BlockDesc</span></code> refers to its parent block by its index in the array.  For example, operators in the step block of an RNN operator need to be able to access variables in its ancestor blocks.</p>
<p>Whenever we create a block, we need to set its parent block to the current block, hence the Python class <code class="docutils literal"><span class="pre">Program</span></code> needs to maintain a data member <code class="docutils literal"><span class="pre">current_block</span></code>.</p>
214 215
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Program</span><span class="p">(</span><span class="n">objects</span><span class="p">):</span>
    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
216
        <span class="bp">self</span><span class="o">.</span><span class="n">desc</span> <span class="o">=</span> <span class="n">core</span><span class="o">.</span><span class="n">NewProgram</span><span class="p">()</span> <span class="c1"># a C++ ProgramDesc pointer.</span>
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        <span class="bp">self</span><span class="o">.</span><span class="n">blocks</span> <span class="o">=</span> <span class="n">vector</span><span class="o">&lt;</span><span class="n">Block</span><span class="o">&gt;</span><span class="p">()</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">blocks</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">Block</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">))</span> <span class="c1"># the global block</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">current_block</span> <span class="o">=</span> <span class="mi">0</span>          <span class="c1"># initialized to the global block</span>

    <span class="k">def</span> <span class="nf">global_block</span><span class="p">():</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">blocks</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>

    <span class="k">def</span> <span class="nf">current_block</span><span class="p">():</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_block</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">current_block</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">rollback</span><span class="p">():</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">current_block</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">current_block</span><span class="p">()</span><span class="o">.</span><span class="n">parent_idx</span>

    <span class="k">def</span> <span class="nf">create_block</span><span class="p">():</span>
        <span class="n">new_block_idx</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">block</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">blocks</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">Block</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">current_block</span><span class="p">))</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">current_block</span> <span class="o">=</span> <span class="n">new_block_idx</span>
        <span class="k">return</span> <span class="n">current_block</span><span class="p">()</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">Program</span></code> is an accessor to the protobuf message <code class="docutils literal"><span class="pre">ProgramDesc</span></code>, which is created in C++ space, because the InferShape function is in C++, which manipulates <code class="docutils literal"><span class="pre">VarDesc</span></code> messages, which are in turn members of <code class="docutils literal"><span class="pre">BlockDesc</span></code>, which is a member of <code class="docutils literal"><span class="pre">ProgramDesc</span></code>.</p>
<p><code class="docutils literal"><span class="pre">Program</span></code> creates the first block as the global block in its constructor.  All parameters and their initializer operators are in the global block.</p>
</div>
<div class="section" id="block">
<span id="block"></span><h3>Block<a class="headerlink" href="#block" title="永久链接至标题"></a></h3>
<p>A <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md">Block</a> includes</p>
<ol class="simple">
<li>a map from variable names to an instance of the Python <code class="docutils literal"><span class="pre">Variable</span></code> class, and</li>
<li>a list of <code class="docutils literal"><span class="pre">Operator</span></code> instances.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Block</span><span class="p">(</span><span class="n">objects</span><span class="p">):</span>
    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">program</span><span class="p">,</span> <span class="n">parent_idx</span><span class="p">):</span>
249
        <span class="bp">self</span><span class="o">.</span><span class="n">desc</span> <span class="o">=</span> <span class="n">core</span><span class="o">.</span><span class="n">NewBlock</span><span class="p">(</span><span class="n">program</span><span class="o">.</span><span class="n">desc</span><span class="p">)</span>
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        <span class="bp">self</span><span class="o">.</span><span class="n">program</span> <span class="o">=</span> <span class="n">program</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">vars</span> <span class="o">=</span> <span class="nb">map</span><span class="o">&lt;</span><span class="n">string</span><span class="p">,</span> <span class="n">Variable</span><span class="o">&gt;</span><span class="p">()</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">ops</span> <span class="o">=</span> <span class="n">vector</span><span class="o">&lt;</span><span class="n">Operator</span><span class="o">&gt;</span><span class="p">()</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">parent_idx</span> <span class="o">=</span> <span class="n">parent_idx</span>

    <span class="k">def</span> <span class="nf">create_var</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">...</span><span class="p">):</span>
        <span class="k">return</span> <span class="n">Variable</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">_create_global_var</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">...</span><span class="p">):</span>
        <span class="n">program</span><span class="o">.</span><span class="n">global_block</span><span class="p">()</span><span class="o">.</span><span class="n">create_var</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">create_parameter</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="o">...</span><span class="p">):</span>
        <span class="c1"># Parameter is a subclass of variable. See Parameter section for details.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">vars</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_create_global_var</span><span class="p">(</span><span class="o">...</span><span class="p">),</span> <span class="o">...</span><span class="p">)</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">vars</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>

    <span class="k">def</span> <span class="nf">append_operator</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">...</span><span class="p">):</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">ops</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">Operator</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">...</span><span class="p">))</span>

    <span class="k">def</span> <span class="nf">prepend_operator</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">...</span><span class="p">):</span> <span class="c1"># Parameter&#39;s ctor prepands initialize operators.</span>
       <span class="bp">self</span><span class="o">.</span><span class="n">ops</span><span class="o">.</span><span class="n">prepend</span><span class="p">(</span><span class="n">Operator</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">...</span><span class="p">))</span>
</pre></div>
</div>
273 274
<p><code class="docutils literal"><span class="pre">create_parameter</span></code> is necessary because parameters are global variables, defined in the global block, but can be created in some sub-blocks. For example, an FC layer in the step block of an RNN operator.</p>
<p><code class="docutils literal"><span class="pre">prepend_operator</span></code> is necessary because the constructor of <code class="docutils literal"><span class="pre">Parameter</span></code> needs to create the initialize (or load) operator of the parameter, and would like to put it in the <em>preamble</em> of the global block.</p>
275 276 277
</div>
<div class="section" id="operator">
<span id="operator"></span><h3>Operator<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3>
278
<p>The <code class="docutils literal"><span class="pre">Operator</span></code> class fills in the <code class="docutils literal"><span class="pre">OpDesc</span></code> message and calls the C++ function <code class="docutils literal"><span class="pre">InferShape</span></code> to infer the output shapes from the input shapes.</p>
279 280 281 282 283 284 285 286
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Operator</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
                 <span class="n">block</span><span class="p">,</span>  <span class="c1"># Block</span>
                 <span class="nb">type</span><span class="p">,</span>   <span class="c1"># string</span>
                 <span class="n">inputs</span><span class="p">,</span> <span class="c1"># dict&lt;string, Variable&gt;</span>
                 <span class="n">outputs</span><span class="p">,</span><span class="c1"># dict&lt;stirng, Variable&gt;</span>
                 <span class="n">attrs</span>   <span class="c1"># dict&lt;string, Any&gt;</span>
                 <span class="p">):</span>
287 288
        <span class="bp">self</span><span class="o">.</span><span class="n">desc</span> <span class="o">=</span> <span class="n">core</span><span class="o">.</span><span class="n">NewOpDesc</span><span class="p">(</span><span class="n">block</span><span class="o">.</span><span class="n">desc</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">attrs</span><span class="p">)</span>
        <span class="n">core</span><span class="o">.</span><span class="n">infer_shape</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">desc</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">outputs</span><span class="p">)</span>
289 290

    <span class="k">def</span> <span class="nf">type</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
291
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">desc</span><span class="o">.</span><span class="n">type</span><span class="p">()</span>
292 293
</pre></div>
</div>
294
<p><code class="docutils literal"><span class="pre">Operator</span></code> creates the <code class="docutils literal"><span class="pre">OpDesc</span></code> message in C++ space, so that it can call the <code class="docutils literal"><span class="pre">InferShape</span></code> function, which is in C++.</p>
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
</div>
<div class="section" id="variable">
<span id="variable"></span><h3>Variable<a class="headerlink" href="#variable" title="永久链接至标题"></a></h3>
<p>Operators take Variables as its inputs and outputs.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Variable</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
                 <span class="n">block</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>      <span class="c1"># Block</span>
                 <span class="n">name</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>       <span class="c1"># string</span>
                 <span class="n">shape</span><span class="p">,</span>           <span class="c1"># tuple</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s2">&quot;float32&quot;</span><span class="p">,</span> <span class="c1"># string</span>
                 <span class="n">lod_level</span><span class="o">=</span><span class="bp">None</span>   <span class="c1"># int</span>
                 <span class="p">):</span>
        <span class="k">if</span> <span class="n">name</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
            <span class="n">name</span> <span class="o">=</span> <span class="n">unique_name_generator</span><span class="p">()</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">name</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">block</span> <span class="o">=</span> <span class="n">block</span>
311
        <span class="bp">self</span><span class="o">.</span><span class="n">desc</span> <span class="o">=</span> <span class="n">core</span><span class="o">.</span><span class="n">NewVarDesc</span><span class="p">(</span><span class="n">block</span><span class="o">.</span><span class="n">desc</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">shape</span><span class="p">,</span> <span class="n">lod_level</span><span class="p">)</span>
312 313 314
        <span class="bp">self</span><span class="o">.</span><span class="n">writer</span> <span class="o">=</span> <span class="bp">None</span>
</pre></div>
</div>
315
<p>Please be aware of <code class="docutils literal"><span class="pre">self.writer</span></code>, that tracks operator who creates the variable.  It possible that there are more than one operators who write a variable, but in Python space, each write to a variable is represented by a Variable class.  This is guaranteed by the fact that <strong><code class="docutils literal"><span class="pre">core.NewVarDesc</span></code> must NOT create a new <code class="docutils literal"><span class="pre">VarDesc</span></code> message if its name already exists in the specified block</strong>.</p>
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
</div>
<div class="section" id="parameter">
<span id="parameter"></span><h3>Parameter<a class="headerlink" href="#parameter" title="永久链接至标题"></a></h3>
<p>A parameter is a global variable with an initializer (or load) operator.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Parameter</span><span class="p">(</span><span class="n">Variable</span><span class="p">):</span>
    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
                 <span class="n">block</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>      <span class="c1"># Block</span>
                 <span class="n">name</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>       <span class="c1"># string</span>
                 <span class="n">shape</span><span class="p">,</span>           <span class="c1"># tuple</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s2">&quot;float32&quot;</span><span class="p">,</span> <span class="c1"># string</span>
                 <span class="n">lod_level</span><span class="o">=</span><span class="bp">None</span>   <span class="c1"># int</span>
                 <span class="n">trainable</span><span class="p">,</span>       <span class="c1"># bool</span>
                 <span class="n">initialize_op_attrs</span><span class="p">,</span>
                 <span class="n">optimize_op_attrs</span><span class="p">):</span>
        <span class="nb">super</span><span class="p">(</span><span class="n">Parameter</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">shape</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">lod_level</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">trainable</span> <span class="o">=</span> <span class="n">trainable</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">optimize_op_attrs</span> <span class="o">=</span> <span class="n">optimize_op_attrs</span>
        <span class="n">block</span><span class="o">.</span><span class="n">prepend</span><span class="p">(</span><span class="n">Operator</span><span class="p">(</span><span class="n">block</span><span class="p">,</span>  <span class="c1"># Block</span>
                               <span class="n">initialize_op_attrs</span><span class="p">[</span><span class="s1">&#39;type&#39;</span><span class="p">],</span>   <span class="c1"># string</span>
                               <span class="bp">None</span><span class="p">,</span>   <span class="c1"># no inputs</span>
                               <span class="bp">self</span><span class="p">,</span>   <span class="c1"># output is the parameter</span>
                               <span class="n">initialize_op_attrs</span><span class="p">)</span>
</pre></div>
</div>
340
<p>When users create a parameter, they can call</p>
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">program</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span>
  <span class="o">...</span><span class="p">,</span>
  <span class="n">init_attr</span><span class="o">=</span><span class="p">{</span>
    <span class="nb">type</span><span class="p">:</span> <span class="s2">&quot;uniform_random&quot;</span><span class="p">,</span>
    <span class="nb">min</span><span class="p">:</span> <span class="o">-</span><span class="mf">1.0</span><span class="p">,</span>
    <span class="nb">max</span><span class="p">:</span> <span class="mf">1.0</span><span class="p">,</span>
  <span class="p">})</span>
<span class="p">)</span>
</pre></div>
</div>
<p>In above example, <code class="docutils literal"><span class="pre">init_attr.type</span></code> names an initialize operator.  It can also name the load operator</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">init_attr</span><span class="o">=</span><span class="p">{</span>
 <span class="nb">type</span><span class="p">:</span> <span class="s2">&quot;load&quot;</span><span class="p">,</span>
 <span class="n">filename</span><span class="p">:</span> <span class="s2">&quot;something.numpy&quot;</span><span class="p">,</span>
<span class="p">}</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">optimize_op_attrs</span></code> is not in the <code class="docutils literal"><span class="pre">VarDesc</span></code> message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator&#8217;s <code class="docutils literal"><span class="pre">OpDesc</span></code>, and will be in the <code class="docutils literal"><span class="pre">OpDesc</span></code> message.</p>
</div>
</div>
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
<div class="section" id="layer-function">
<span id="layer-function"></span><h2>Layer Function<a class="headerlink" href="#layer-function" title="永久链接至标题"></a></h2>
<p>A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.</p>
<p>Layer functions take <code class="docutils literal"><span class="pre">Variable</span></code> and configuration parameters as its input and return the output variable(s).</p>
<p>For example, <code class="docutils literal"><span class="pre">FullyConnected</span></code> take one or more variable as its input. The input could be input data or another layer&#8217;s output. There are many configuration options for a <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer, such as layer size, activation, parameter names, initialization strategies of parameters, and so on. The <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer will return an output variable.</p>
<div class="section" id="necessity-for-reusing-code-between-layer-functions">
<span id="necessity-for-reusing-code-between-layer-functions"></span><h3>Necessity for reusing code between layer functions<a class="headerlink" href="#necessity-for-reusing-code-between-layer-functions" title="永久链接至标题"></a></h3>
<p>There are a lot of code that can be reused. Such as</p>
<ul class="simple">
<li>Give the default value of configuration. e.g., default initialize strategy for parameters is uniform random with <code class="docutils literal"><span class="pre">min</span> <span class="pre">=</span> <span class="pre">-1.0</span></code>, <code class="docutils literal"><span class="pre">max</span> <span class="pre">=</span> <span class="pre">1.0</span></code>. and default initialize strategy for bias is to fill zero.</li>
<li>Append the activation operator.</li>
<li>Create a temporary variable.</li>
<li>Create parameter.</li>
<li>Generate a unique name.</li>
<li>Add a bias.</li>
<li>...</li>
</ul>
<p>A mechanism to reuse code between layer functions is necessary. It will be around <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/pull/4724/files#diff-823b27e07e93914ada859232ae23f846R12">150 lines of code</a> if we write a <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer without any helper functions.</p>
</div>
<div class="section" id="comparision-between-global-functions-and-helper-class">
<span id="comparision-between-global-functions-and-helper-class"></span><h3>Comparision between global functions and helper class<a class="headerlink" href="#comparision-between-global-functions-and-helper-class" title="永久链接至标题"></a></h3>
<p>The <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer will be as follow when we provide global functions:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">param_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">bias_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
  <span class="k">if</span> <span class="n">name</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
    <span class="n">name</span> <span class="o">=</span> <span class="n">unique_name</span><span class="p">(</span><span class="s2">&quot;fc&quot;</span><span class="p">)</span>
  <span class="nb">input</span> <span class="o">=</span> <span class="n">multiple_input</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
  <span class="n">param_attr</span> <span class="o">=</span> <span class="n">default_param_attr</span><span class="p">(</span><span class="n">param_attr</span><span class="p">)</span>
  <span class="n">param_attr</span> <span class="o">=</span> <span class="n">multiple_param_attr</span><span class="p">(</span><span class="n">param_attr</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="nb">input</span><span class="p">))</span>

  <span class="c1"># mul</span>
  <span class="n">mul_results</span> <span class="o">=</span> <span class="p">[]</span>
  <span class="k">for</span> <span class="n">ipt</span><span class="p">,</span> <span class="n">attr</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">param_attr</span><span class="p">):</span>
    <span class="n">shape</span> <span class="o">=</span> <span class="n">ipt</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">+</span> <span class="p">[</span><span class="n">size</span><span class="p">]</span>
    <span class="n">w</span> <span class="o">=</span> <span class="n">g_program</span><span class="o">.</span><span class="n">global_block</span><span class="p">()</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="n">ipt</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">attr</span><span class="p">)</span>
    <span class="n">tmp</span> <span class="o">=</span> <span class="n">create_tmp_var</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
    <span class="n">g_program</span><span class="o">.</span><span class="n">current_block</span><span class="p">()</span><span class="o">.</span><span class="n">append_op</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">,</span> <span class="p">{</span><span class="n">ipt</span><span class="p">,</span> <span class="n">w</span><span class="p">},</span> <span class="p">{</span><span class="n">tmp</span><span class="p">})</span>
  <span class="n">mul_results</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>

  <span class="c1"># add sum</span>
  <span class="o">...</span>
  <span class="c1"># add bias</span>
  <span class="o">...</span>
  <span class="c1"># add activation</span>
  <span class="o">...</span>
  <span class="k">return</span> <span class="n">out</span>
</pre></div>
</div>
<p>We can provide many helpers functions for layer developers. However, there are several disadvantages for global helper functions:</p>
<ol class="simple">
<li>We need a namespace for these methods, then layer developers can quickly figure out what method they can use.</li>
<li>Global functions will force layer developers to pass its parameter time by time.</li>
</ol>
<p>So we provide a helper class, <code class="docutils literal"><span class="pre">LayerHelper</span></code>, to share code between layer functions. The <code class="docutils literal"><span class="pre">FullyConnected</span></code> Layer will be as follow.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">param_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">bias_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
  <span class="n">helper</span> <span class="o">=</span> <span class="n">LayerHelper</span><span class="p">(</span><span class="nb">locals</span><span class="p">())</span>  <span class="c1"># pass all parameter to LayerHelper</span>

  <span class="n">mul_results</span> <span class="o">=</span> <span class="p">[]</span>
  <span class="k">for</span> <span class="n">ipt</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">helper</span><span class="o">.</span><span class="n">iter_multiple_input_and_param</span><span class="p">():</span>
    <span class="n">w</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="n">ipt</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">+</span> <span class="p">[</span><span class="n">size</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="n">ipt</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
    <span class="n">tmp</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">create_tmp_variable</span><span class="p">()</span>
    <span class="n">helper</span><span class="o">.</span><span class="n">append_op</span><span class="p">(</span><span class="s1">&#39;mul&#39;</span><span class="p">,</span> <span class="p">{</span><span class="n">ipt</span><span class="p">,</span> <span class="n">w</span><span class="p">},</span> <span class="p">{</span><span class="n">tmp</span><span class="p">})</span>
    <span class="n">mul_results</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>

  <span class="n">pre_bias</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">add_sum</span><span class="p">(</span><span class="n">mul_results</span><span class="p">)</span>
  <span class="n">pre_activation</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">add_bias</span><span class="p">(</span><span class="n">pre_bias</span><span class="p">)</span>
  <span class="k">return</span> <span class="n">helper</span><span class="o">.</span><span class="n">add_activation</span><span class="p">(</span><span class="n">pre_activation</span><span class="p">)</span>
427 428
</pre></div>
</div>
429
<p>We not only use the fewer lines of code to write <code class="docutils literal"><span class="pre">fc_layer</span></code> but also make the code clearer to understand. At the same time, layer developers can figure out what function they can invoke by typing <code class="docutils literal"><span class="pre">helper.</span></code> in a python editor.</p>
430
</div>
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
<div class="section" id="implementation-of-layer-helper">
<span id="implementation-of-layer-helper"></span><h3>Implementation of layer helper<a class="headerlink" href="#implementation-of-layer-helper" title="永久链接至标题"></a></h3>
<p>We just keep all parameters of a layer function as a dictionary in layer helper as a private data member. Every method of layer helper will look up the dictionary after it is invoked. In that way, we can implement a layer helper for all layer functions even some layer does not contain some operator. For example, The <code class="docutils literal"><span class="pre">activation</span></code> is used by the FullyConnected layer or convolution layers, but a cross-entropy layer does not use it. The example code of <code class="docutils literal"><span class="pre">add_activation</span></code> are:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">LayerHelper</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
  <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>  <span class="c1"># kwargs is short for `keyword arguments`</span>
    <span class="bp">self</span><span class="o">.</span><span class="n">kwargs</span> <span class="o">=</span> <span class="n">kwargs</span>

  <span class="k">def</span> <span class="nf">add_activation</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_var</span><span class="p">):</span>
    <span class="n">act</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;act&quot;</span><span class="p">,</span> <span class="bp">None</span><span class="p">)</span>  <span class="c1"># default value is None</span>
    <span class="k">if</span> <span class="n">act</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>  <span class="c1"># do nothing if no act</span>
      <span class="k">return</span> <span class="n">input_var</span>

    <span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">create_tmp_var</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
    <span class="bp">self</span><span class="o">.</span><span class="n">append_op</span><span class="p">(</span><span class="nb">type</span><span class="o">=</span><span class="n">act</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="n">input_var</span><span class="p">,</span> <span class="n">output</span><span class="o">=</span><span class="n">tmp</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">tmp</span>
446 447 448
</pre></div>
</div>
</div>
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
<div class="section" id="return-value-of-layer-functions">
<span id="return-value-of-layer-functions"></span><h3>Return value of layer functions<a class="headerlink" href="#return-value-of-layer-functions" title="永久链接至标题"></a></h3>
<p>The layer will return a Variable, which is also the output of an operator.  However, outputs of a layer function have more attributes than an operator. There are parameter variables, and their gradient variables need to return. To return them is useful. For example,</p>
<ol class="simple">
<li>Users can debug the network by printing parameter gradients.</li>
<li>Users can append attributes to a parameter, such as, <code class="docutils literal"><span class="pre">param.stop_gradient=True</span></code> will make a parameter stop generate the gradient. We can fix the parameter value during training by using this attribute.</li>
</ol>
<p>However, it is good to return a Variable for layers, since all layers and operators use Variables as their parameters. We can just append a <code class="docutils literal"><span class="pre">param</span></code> field and a <code class="docutils literal"><span class="pre">grad</span></code> field for layer function since the Python is dynamic typing.</p>
<p>The sample usage is</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">hidden</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
<span class="o">...</span>

<span class="n">executor</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fetch_list</span><span class="o">=</span><span class="p">[</span><span class="n">hidden</span><span class="o">.</span><span class="n">param</span><span class="p">,</span> <span class="n">hidden</span><span class="o">.</span><span class="n">param</span><span class="o">.</span><span class="n">grad</span><span class="p">],</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
</div>
466
</div>
467 468 469 470
<div class="section" id="optimizer">
<span id="optimizer"></span><h2>Optimizer<a class="headerlink" href="#optimizer" title="永久链接至标题"></a></h2>
<p><a class="reference internal" href="optimizer.html"><span class="doc">Optimizer Design Doc</span></a></p>
</div>
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
508
            HAS_SOURCE:  true
509 510 511 512 513 514 515
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
516

517 518 519 520 521 522
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
523

524
  
525 526 527 528 529 530 531
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
532 533 534

</body>
</html>