float16.html 23.4 KB
Newer Older
1 2


3 4


5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: float16 &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
33

34 35 36 37 38
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 
39 40 41 42 43 44 45 46 47 48
<script>
var _hmt = _hmt || [];
(function() {
  var hm = document.createElement("script");
  hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
  var s = document.getElementsByTagName("script")[0]; 
  s.parentNode.insertBefore(hm, s);
})();
</script>

49 50 51 52 53 54 55 56

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

57 58 59 60 61 62 63 64 65 66 67 68 69
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../index_cn.html" class="icon icon-home"> PaddlePaddle
          

          
70 71
          </a>

72 73 74 75 76 77
          
            
            
          

          
78 79 80 81 82 83
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
84
</div>
85 86

          
87 88 89 90
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
<nav class="doc-menu-vertical" role="navigation">

<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中启动训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_cn.html">Kubernetes on AWS</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_cn.html">RNN模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_cn.html">如何贡献文档</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
154 155
</ul>

156 157
</nav>

158 159
        </div>
      </div>
160 161
    </nav>

162
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
163

164 165 166 167 168
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../index_cn.html">PaddlePaddle</a>
      </nav>
169 170


171 172 173 174
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
175

176
 
177 178 179 180 181



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
182
    <li><a href="../index_cn.html">Docs</a> &raquo;</li>
183 184
      
    <li>Design Doc: float16</li>
185 186 187 188 189 190 191
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../_sources/design/float16.md.txt" rel="nofollow"> View page source</a>
          
        
      </li>
192
  </ul>
193
  <hr/>
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-float16">
<span id="design-doc-float16"></span><h1>Design Doc: float16<a class="headerlink" href="#design-doc-float16" title="永久链接至标题"></a></h1>
<div class="section" id="why-float16">
<span id="why-float16"></span><h2>Why float16<a class="headerlink" href="#why-float16" title="永久链接至标题"></a></h2>
<p>Half precision (float16) is a binary floating-point format that occupies 16 bits in memory. float16 is half the size of traditional 32-bit single precision format (float) and has lower precision and smaller range.</p>
<p>When high precision computation is not required, using float16 data type could potentially</p>
<ul class="simple">
<li>reduce storage space, memory bandwidth, and power usages;</li>
<li>increase the chance of data fitting into a smaller cache of lower latency;</li>
<li>provide arithmetic speed up if supported by hardware.</li>
</ul>
</div>
<div class="section" id="survey-of-current-float16-support">
<span id="survey-of-current-float16-support"></span><h2>Survey of current float16 support<a class="headerlink" href="#survey-of-current-float16-support" title="永久链接至标题"></a></h2>
<p>A brief survey of float16 support on different compilers, hardwares, and libraries can be found below. Interested readers can refer to <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/4853">link1</a> and <a class="reference external" href="https://github.com/Xreki/Xreki.github.io/blob/master/multi_data_types_in_dl_framework/ppt/float16_and_quantized_type.md">link2</a> for more info.</p>
<p>The goal of float16 is to serve as a key for the executor to find and run the correct version of compute method specialized for float16 in operator kernel. It should be compatible with various natively supported float16 implementations including <code class="docutils literal"><span class="pre">__half</span></code> for cuda, <code class="docutils literal"><span class="pre">float16_t</span></code> for ARM, and <code class="docutils literal"><span class="pre">Eigen::half</span></code> for Eigen to make writing customized float16 kernels easier.</p>
<div class="section" id="compiler">
<span id="compiler"></span><h3>Compiler<a class="headerlink" href="#compiler" title="永久链接至标题"></a></h3>
<ul class="simple">
<li>nvcc supports <code class="docutils literal"><span class="pre">__half</span></code> data type after CUDA 7.5.</li>
<li><code class="docutils literal"><span class="pre">__fp16</span></code> or <code class="docutils literal"><span class="pre">float16_t</span></code> is supported as storage type for gcc &gt;= 6.1 and clang &gt;= 3.4.</li>
<li><code class="docutils literal"><span class="pre">__fp16</span></code> or <code class="docutils literal"><span class="pre">float16_t</span></code> is supported as arithmetic type for gcc &gt;= 7.1 and clang &gt;= 3.9.</li>
</ul>
</div>
<div class="section" id="hardware">
<span id="hardware"></span><h3>Hardware<a class="headerlink" href="#hardware" title="永久链接至标题"></a></h3>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">__half</span></code> is supported on GPU with compute capability &gt;= 5.3.</li>
<li><code class="docutils literal"><span class="pre">__fp16</span></code> is supported as storage type for ARMv7-A, ARMv8-A, and above.</li>
<li><code class="docutils literal"><span class="pre">__fp16</span></code> is supported as arithmetic type after ARMv8.2-A (currently, the only microarchitecture implementing ARMv8.2-A is ARM Cortex-A75, which is announced in May 2017. There seems to be no application processors currently available on market that adopts this architecture. It is reported that Qualcomm Snapdragon 845 uses Cortex-A75 design and will be available in mobile devices in early 2018).</li>
</ul>
</div>
<div class="section" id="libraries">
<span id="libraries"></span><h3>Libraries<a class="headerlink" href="#libraries" title="永久链接至标题"></a></h3>
<ul class="simple">
<li><a class="reference external" href="https://github.com/RLovelett/eigen">Eigen</a> &gt;= 3.3 supports float16 calculation on both GPU and CPU using the <code class="docutils literal"><span class="pre">Eigen::half</span></code> class. It is mostly useful for Nvidia GPUs because of the overloaded arithmetic operators using cuda intrinsics. It falls back to using software emulation on CPU for calculation and there is no special treatment to ARM processors.</li>
<li><a class="reference external" href="https://github.com/ARM-software/ComputeLibrary">ARM compute library</a> &gt;= 17.02.01 supports NEON FP16 kernels (requires ARMv8.2-A CPU).</li>
</ul>
</div>
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
<div class="section" id="cuda-version-issue">
<span id="cuda-version-issue"></span><h3>CUDA version issue<a class="headerlink" href="#cuda-version-issue" title="永久链接至标题"></a></h3>
<p>There are currently three versions of CUDA that supports <code class="docutils literal"><span class="pre">__half</span></code> data type, namely, CUDA 7.5, 8.0, and 9.0.
CUDA 7.5 and 8.0 define <code class="docutils literal"><span class="pre">__half</span></code> as a simple struct that has a <code class="docutils literal"><span class="pre">uint16_t</span></code> data (see <a class="reference external" href="https://github.com/ptillet/isaac/blob/9212ab5a3ddbe48f30ef373f9c1fb546804c7a8c/include/isaac/external/CUDA/cuda_fp16.h"><code class="docutils literal"><span class="pre">cuda_fp16.h</span></code></a>) as follows:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">typedef</span> <span class="n">struct</span> <span class="n">__align__</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> <span class="p">{</span>
   <span class="n">unsigned</span> <span class="n">short</span> <span class="n">x</span><span class="p">;</span>
<span class="p">}</span> <span class="n">__half</span><span class="p">;</span>

<span class="n">typedef</span> <span class="n">__half</span> <span class="n">half</span><span class="p">;</span>
</pre></div>
</div>
<p>This struct does not define any overloaded arithmetic operators. So you have to directly use <code class="docutils literal"><span class="pre">__hadd</span></code> instead of <code class="docutils literal"><span class="pre">+</span></code> to correctly add two half types:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">__global__</span> <span class="n">void</span> <span class="n">Add</span><span class="p">()</span> <span class="p">{</span>
  <span class="n">half</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">;</span>
  <span class="n">c</span> <span class="o">=</span> <span class="n">__hadd</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">);</span> <span class="o">//</span> <span class="n">correct</span>
  <span class="n">c</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span><span class="p">;</span> <span class="o">//</span> <span class="n">compiler</span> <span class="n">error</span><span class="p">:</span> <span class="n">no</span> <span class="n">operator</span> <span class="s2">&quot;+&quot;</span> <span class="n">matches</span> <span class="n">these</span> <span class="n">operands</span>
<span class="p">}</span>
</pre></div>
</div>
<p>CUDA 9.0 provides a major update to the half data type. The related code can be found in the updated <a class="reference external" href="https://github.com/ptillet/isaac/blob/master/include/isaac/external/CUDA/cuda_fp16.h"><code class="docutils literal"><span class="pre">cuda_fp16.h</span></code></a> and the newly added <a class="reference external" href="https://github.com/ptillet/isaac/blob/master/include/isaac/external/CUDA/cuda_fp16.hpp"><code class="docutils literal"><span class="pre">cuda_fp16.hpp</span></code></a>.</p>
<p>Essentially, CUDA 9.0 renames the original <code class="docutils literal"><span class="pre">__half</span></code> type in 7.5 and 8.0 as <code class="docutils literal"><span class="pre">__half_raw</span></code>, and defines a new <code class="docutils literal"><span class="pre">__half</span></code> class type that has constructors, conversion operators, and also provides overloaded arithmetic operators such as follows:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">typedef</span> <span class="n">struct</span> <span class="n">__CUDA_ALIGN__</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> <span class="p">{</span>
    <span class="n">unsigned</span> <span class="n">short</span> <span class="n">x</span><span class="p">;</span>
<span class="p">}</span> <span class="n">__half_raw</span><span class="p">;</span>


<span class="n">struct</span> <span class="n">__CUDA_ALIGN__</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> <span class="n">__half</span> <span class="p">{</span>
<span class="n">protected</span><span class="p">:</span>
    <span class="n">unsigned</span> <span class="n">short</span> <span class="n">__x</span><span class="p">;</span>
<span class="n">public</span><span class="p">:</span>
    <span class="o">//</span> <span class="n">constructors</span> <span class="ow">and</span> <span class="n">conversion</span> <span class="n">operators</span> <span class="n">from</span><span class="o">/</span><span class="n">to</span> 
    <span class="o">//</span> <span class="n">__half_raw</span> <span class="ow">and</span> <span class="n">other</span> <span class="n">built</span><span class="o">-</span><span class="ow">in</span> <span class="n">data</span> <span class="n">types</span>
<span class="p">}</span>

<span class="n">typedef</span> <span class="n">__half</span> <span class="n">half</span><span class="p">;</span>

<span class="n">__device__</span> <span class="n">__forceinline__</span> 
<span class="n">__half</span> <span class="n">operator</span><span class="o">+</span><span class="p">(</span><span class="n">const</span> <span class="n">__half</span> <span class="o">&amp;</span><span class="n">lh</span><span class="p">,</span> <span class="n">const</span> <span class="n">__half</span> <span class="o">&amp;</span><span class="n">rh</span><span class="p">)</span> <span class="p">{</span> 
    <span class="k">return</span> <span class="n">__hadd</span><span class="p">(</span><span class="n">lh</span><span class="p">,</span> <span class="n">rh</span><span class="p">);</span> 
<span class="p">}</span>

<span class="o">//</span> <span class="n">Other</span> <span class="n">overloaded</span> <span class="n">operators</span>
</pre></div>
</div>
<p>This new design makes <code class="docutils literal"><span class="pre">c</span> <span class="pre">=</span> <span class="pre">a</span> <span class="pre">+</span> <span class="pre">b</span></code> work correctly for CUDA half data type.</p>
</div>
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
</div>
<div class="section" id="implementation">
<span id="implementation"></span><h2>Implementation<a class="headerlink" href="#implementation" title="永久链接至标题"></a></h2>
<p>The float16 class holds a 16-bit <code class="docutils literal"><span class="pre">uint16_t</span></code> data internally.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">struct</span> <span class="n">float16</span> <span class="p">{</span>
  <span class="n">uint16_t</span> <span class="n">x</span><span class="p">;</span>
<span class="p">};</span>
</pre></div>
</div>
<p>float16 supports the following features:</p>
<ul class="simple">
<li>constructors / assignment operators that take input from primitive data types including bool, integers of various length, float, and double.</li>
<li>constructors / assignment operators that take input from <code class="docutils literal"><span class="pre">__half</span></code> on cuda, <code class="docutils literal"><span class="pre">float16_t</span></code> on ARM, and <code class="docutils literal"><span class="pre">Eigen::half</span></code> on Eigen.</li>
<li>conversion operators to primitive data types and half precision data types on cuda, ARM and Eigen.</li>
<li>overloaded arithmetic operators for cuda, arm, and non-arm cpu, respectively. These operators will take advantage of the cuda and ARM intrinsics on the corresponding hardware.</li>
</ul>
<p>To support the above features, two fundamental conversion functions are provided:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">float16</span> <span class="n">float_to_half_rn</span><span class="p">(</span><span class="nb">float</span> <span class="n">f</span><span class="p">);</span>  <span class="o">//</span> <span class="n">convert</span> <span class="n">to</span> <span class="n">half</span> <span class="n">precision</span> <span class="ow">in</span> <span class="nb">round</span><span class="o">-</span><span class="n">to</span><span class="o">-</span><span class="n">nearest</span><span class="o">-</span><span class="n">even</span> <span class="n">mode</span>
<span class="nb">float</span> <span class="n">half_to_float</span><span class="p">(</span><span class="n">float16</span> <span class="n">h</span><span class="p">);</span>
</pre></div>
</div>
<p>which provides one-to-one conversion between float32 and float16. These twos functions will do different conversion routines based on the current hardware. CUDA/ARM instrinsics will be used when the corresonding hardware is available. If the hardware or compiler level does not support float32 to float16 conversion, software emulation will be performed to do the conversion.</p>
</div>
<div class="section" id="to-do">
<span id="to-do"></span><h2>To do<a class="headerlink" href="#to-do" title="永久链接至标题"></a></h2>
<p>After float16 class is available, some of the future items are below:</p>
<ul class="simple">
<li>Update pybind/tensor_py.h to bind c++ float16 with numpy float16.</li>
311
<li>Modify <code class="docutils literal"><span class="pre">GetKernelType()</span></code> method in <code class="docutils literal"><span class="pre">framework/operator.h</span></code> to make it compatible with float16.</li>
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
<li>Create a type-casting operator that can convert the data type in tensor between float16 and other types.</li>
</ul>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
352
            HAS_SOURCE:  true
353 354 355 356 357 358 359
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
360

361 362 363 364 365 366
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
367

368
  
369 370 371 372 373 374 375
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
376 377 378

</body>
</html>