fluid_cluster_train_en.html 26.4 KB
Newer Older
1 2


3 4


5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Fluid Distributed Training &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
29
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
30 31 32
  

  
33

34 35
  
        <link rel="index" title="Index"
36 37 38
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/> 
39 40 41 42 43 44 45 46 47 48
<script>
var _hmt = _hmt || [];
(function() {
  var hm = document.createElement("script");
  hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
  var s = document.getElementsByTagName("script")[0]; 
  s.parentNode.insertBefore(hm, s);
})();
</script>

49 50

  
51
  <script src="../../_static/js/modernizr.min.js"></script>
52 53 54 55 56

</head>

<body class="wy-body-for-nav" role="document">

57 58 59 60 61 62 63 64 65 66 67 68 69
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../../index_en.html" class="icon icon-home"> PaddlePaddle
          

          
70 71
          </a>

72 73 74 75 76 77
          
            
            
          

          
78
<div role="search">
79
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
80 81 82 83
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
84
</div>
85 86

          
87 88 89 90
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
<nav class="doc-menu-vertical" role="navigation">

<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/quickstart_en.html">Quick Start</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_en.html">Basic Concept</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/pip_install_en.html">Install using pip</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/build_from_source_en.html">Build from Sources</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="index_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="preparations_en.html">Preparations</a></li>
<li class="toctree-l3"><a class="reference internal" href="cmd_argument_en.html">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="multi_cluster/index_en.html">Use different clusters</a><ul>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/fabric_en.html">Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/openmpi_en.html">OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/k8s_en.html">Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="multi_cluster/k8s_aws_en.html">Kubernetes on AWS</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../rnn/rnn_config_en.html">RNN Configuration</a></li>
<li class="toctree-l3"><a class="reference internal" href="../rnn/recurrent_group_en.html">Recurrent Group Tutorial</a></li>
<li class="toctree-l3"><a class="reference internal" href="../rnn/hierarchical_layer_en.html">Layers supporting hierarchical sequence as input</a></li>
<li class="toctree-l3"><a class="reference internal" href="../rnn/hrnn_rnn_api_compare_en.html">API comparision between RNN and hierarchical RNN</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../dev/write_docs_en.html">Contribute Documentation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_en.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_en.html">Install, Build and Unit test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_en.html">Model Configuration</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_en.html">Parameter Setting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_en.html">Local Training and Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_en.html">Cluster Training and Prediction</a></li>
</ul>
</li>
147 148
</ul>

149 150
</nav>

151 152
        </div>
      </div>
153 154
    </nav>

155
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
156

157 158 159 160 161
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../../index_en.html">PaddlePaddle</a>
      </nav>
162 163


164 165 166 167
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
168

169
 
170 171 172 173 174



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
175
    <li><a href="../../index_en.html">Docs</a> &raquo;</li>
176 177
      
    <li>Fluid Distributed Training</li>
178 179 180 181 182 183 184
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../../_sources/howto/cluster/fluid_cluster_train_en.md.txt" rel="nofollow"> View page source</a>
          
        
      </li>
185
  </ul>
186
  <hr/>
187 188 189 190 191 192 193 194
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="fluid-distributed-training">
<span id="fluid-distributed-training"></span><h1>Fluid Distributed Training<a class="headerlink" href="#fluid-distributed-training" title="Permalink to this headline"></a></h1>
<div class="section" id="introduction">
<span id="introduction"></span><h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
195
<p>In this article, we&#8217;ll explain how to configure and run distributed training jobs with PaddlePaddle Fluid in a bare metal cluster.</p>
196 197 198
</div>
<div class="section" id="preparations">
<span id="preparations"></span><h2>Preparations<a class="headerlink" href="#preparations" title="Permalink to this headline"></a></h2>
199 200 201
<div class="section" id="getting-the-cluster-ready">
<span id="getting-the-cluster-ready"></span><h3>Getting the cluster ready<a class="headerlink" href="#getting-the-cluster-ready" title="Permalink to this headline"></a></h3>
<p>Prepare the compute nodes in the cluster. Nodes in this cluster can be of any specification that runs PaddlePaddle, and with a unique IP address assigned to it. Make sure they can communicate to each other.</p>
202 203 204 205
</div>
<div class="section" id="have-paddlepaddle-installed">
<span id="have-paddlepaddle-installed"></span><h3>Have PaddlePaddle installed<a class="headerlink" href="#have-paddlepaddle-installed" title="Permalink to this headline"></a></h3>
<p>PaddlePaddle must be installed on all nodes. If you have GPU cards on your nodes, be sure to properly install drivers and CUDA libraries.</p>
206
<p>PaddlePaddle build and installation guide can be found  <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html">here</a>.</p>
207 208 209 210
<p>In addition to above, the <code class="docutils literal"><span class="pre">cmake</span></code> command should be run with the option <code class="docutils literal"><span class="pre">WITH_DISTRIBUTE</span></code> set to on. An example bare minimum <code class="docutils literal"><span class="pre">cmake</span></code> command would look as follows:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>cmake .. -DWITH_DOC<span class="o">=</span>OFF -DWITH_GPU<span class="o">=</span>OFF -DWITH_DISTRIBUTE<span class="o">=</span>ON -DWITH_SWIG_PY<span class="o">=</span>ON -DWITH_PYTHON<span class="o">=</span>ON
</pre></div>
</div>
211
</div>
212 213
<div class="section" id="update-the-training-script">
<span id="update-the-training-script"></span><h3>Update the training script<a class="headerlink" href="#update-the-training-script" title="Permalink to this headline"></a></h3>
214 215 216
<div class="section" id="non-cluster-training-script">
<span id="non-cluster-training-script"></span><h4>Non-cluster training script<a class="headerlink" href="#non-cluster-training-script" title="Permalink to this headline"></a></h4>
<p>Let&#8217;s take <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html">Deep Learning 101</a>&#8216;s first chapter: &#8220;fit a line&#8221; as an example.</p>
217
<p>The non-cluster version of this demo with fluid API is as follows:</p>
218
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.v2</span> <span class="kn">as</span> <span class="nn">paddle</span>
219
<span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="kn">as</span> <span class="nn">fluid</span>
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

<span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">13</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">y_predict</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>

<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">square_error_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">y_predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
<span class="n">avg_cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">cost</span><span class="p">)</span>

<span class="n">sgd_optimizer</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.001</span><span class="p">)</span>
<span class="n">sgd_optimizer</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">avg_cost</span><span class="p">)</span>

<span class="n">BATCH_SIZE</span> <span class="o">=</span> <span class="mi">20</span>

<span class="n">train_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span>
    <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span>
        <span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">uci_housing</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="n">buf_size</span><span class="o">=</span><span class="mi">500</span><span class="p">),</span>
    <span class="n">batch_size</span><span class="o">=</span><span class="n">BATCH_SIZE</span><span class="p">)</span>

<span class="n">place</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">CPUPlace</span><span class="p">()</span>
<span class="n">feeder</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">DataFeeder</span><span class="p">(</span><span class="n">place</span><span class="o">=</span><span class="n">place</span><span class="p">,</span> <span class="n">feed_list</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">])</span>
<span class="n">exe</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Executor</span><span class="p">(</span><span class="n">place</span><span class="p">)</span>

<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_startup_program</span><span class="p">())</span>

<span class="n">PASS_NUM</span> <span class="o">=</span> <span class="mi">100</span>
<span class="k">for</span> <span class="n">pass_id</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">PASS_NUM</span><span class="p">):</span>
    <span class="n">fluid</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">save_persistables</span><span class="p">(</span><span class="n">exe</span><span class="p">,</span> <span class="s2">&quot;./fit_a_line.model/&quot;</span><span class="p">)</span>
    <span class="n">fluid</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">load_persistables</span><span class="p">(</span><span class="n">exe</span><span class="p">,</span> <span class="s2">&quot;./fit_a_line.model/&quot;</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">train_reader</span><span class="p">():</span>
        <span class="n">avg_loss_value</span><span class="p">,</span> <span class="o">=</span> <span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_main_program</span><span class="p">(),</span>
                                  <span class="n">feed</span><span class="o">=</span><span class="n">feeder</span><span class="o">.</span><span class="n">feed</span><span class="p">(</span><span class="n">data</span><span class="p">),</span>
                                  <span class="n">fetch_list</span><span class="o">=</span><span class="p">[</span><span class="n">avg_cost</span><span class="p">])</span>

        <span class="k">if</span> <span class="n">avg_loss_value</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">&lt;</span> <span class="mf">10.0</span><span class="p">:</span>
            <span class="nb">exit</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>  <span class="c1"># if avg cost less than 10.0, we think our code is good.</span>
<span class="nb">exit</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
258 259
<p>We created a simple fully-connected neural network training program and handed it to the fluid executor to run for 100 passes.</p>
<p>Now let&#8217;s try to convert it to a distributed version to run on a cluster.</p>
260 261 262
</div>
<div class="section" id="introducing-parameter-server">
<span id="introducing-parameter-server"></span><h4>Introducing parameter server<a class="headerlink" href="#introducing-parameter-server" title="Permalink to this headline"></a></h4>
263
<p>As we can see from the non-cluster version of training script, there is only one role in the script: the trainer, that performs the computing as well as holds the parameters. In cluster training, since multi-trainers are working on the same task, they need one centralized place to hold and distribute parameters. This centralized place is called the Parameter Server in PaddlePaddle.</p>
264
<p><img alt="parameter server architecture" src="../../_images/trainer.png" /></p>
265 266
<p>Parameter Server in fluid not only holds the parameters but is also assigned with a part of the program. Trainers communicate with parameter servers via send/receive OPs. For more technical details, please refer to  <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/dist_refactor/distributed_architecture.md">this document</a>.</p>
<p>Now we need to create programs for both: trainers and parameter servers, the question is how?</p>
267 268 269
</div>
<div class="section" id="slice-the-program">
<span id="slice-the-program"></span><h4>Slice the program<a class="headerlink" href="#slice-the-program" title="Permalink to this headline"></a></h4>
270 271
<p>Fluid provides a tool called &#8220;Distributed Transpiler&#8221; that automatically converts the non-cluster program into cluster program.</p>
<p>The idea behind this tool is to find the optimize OPs and gradient parameters, slice the program into 2 pieces and connect them with send/receive OP.</p>
272 273 274 275 276 277
<p>Optimize OPs and gradient parameters can be found from the return values of optimizer&#8217;s minimize function.</p>
<p>To put them together:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="o">...</span> <span class="c1">#define the program, cost, and create sgd optimizer</span>

<span class="n">optimize_ops</span><span class="p">,</span> <span class="n">params_grads</span> <span class="o">=</span> <span class="n">sgd_optimizer</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">avg_cost</span><span class="p">)</span> <span class="c1">#get optimize OPs and gradient parameters</span>

278
<span class="n">t</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">DistributeTranspiler</span><span class="p">()</span> <span class="c1"># create the transpiler instance</span>
279
<span class="c1"># slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers</span>
280
<span class="n">t</span><span class="o">.</span><span class="n">transpile</span><span class="p">(</span><span class="n">optimize_ops</span><span class="p">,</span> <span class="n">params_grads</span><span class="p">,</span> <span class="n">pservers</span><span class="o">=</span><span class="n">pserver_endpoints</span><span class="p">,</span> <span class="n">trainers</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
281 282 283 284 285

<span class="o">...</span> <span class="c1">#create executor</span>

<span class="c1"># in pserver, run this</span>
<span class="c1">#current_endpoint here means current pserver IP:PORT you wish to run on</span>
286 287 288 289
<span class="n">pserver_prog</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">get_pserver_program</span><span class="p">(</span><span class="n">current_endpoint</span><span class="p">)</span>
<span class="n">pserver_startup</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">get_startup_program</span><span class="p">(</span><span class="n">current_endpoint</span><span class="p">,</span> <span class="n">pserver_prog</span><span class="p">)</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">pserver_startup</span><span class="p">)</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">pserver_prog</span><span class="p">)</span>
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

<span class="c1"># in trainer, run this</span>
<span class="o">...</span> <span class="c1"># define data reader</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_startup_program</span><span class="p">())</span>
<span class="k">for</span> <span class="n">pass_id</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">100</span><span class="p">):</span>
    <span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">train_reader</span><span class="p">():</span>
        <span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">t</span><span class="o">.</span><span class="n">get_trainer_program</span><span class="p">())</span>


</pre></div>
</div>
</div>
</div>
<div class="section" id="e2e-demo">
<span id="e2e-demo"></span><h3>E2E demo<a class="headerlink" href="#e2e-demo" title="Permalink to this headline"></a></h3>
305
<p>Please find the complete demo from <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/book_distribute/notest_dist_fit_a_line.py">here</a>.
306
First <code class="docutils literal"><span class="pre">cd</span></code> into the folder that contains the <code class="docutils literal"><span class="pre">python</span></code> files. In this case:</p>
307
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> /paddle/python/paddle/fluid/tests/book_distribute
308 309 310
</pre></div>
</div>
<p>In parameter server node run the following in the command line:</p>
311 312 313 314 315
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">PSERVERS</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">SERVER_ENDPOINT</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">TRAINING_ROLE</span><span class="o">=</span>PSERVER python notest_dist_fit_a_line.py
</pre></div>
</div>
<p><em>please note we assume that your parameter server runs at 192.168.1.2:6174</em></p>
<p>Wait until the prompt <code class="docutils literal"><span class="pre">Server</span> <span class="pre">listening</span> <span class="pre">on</span> <span class="pre">192.168.1.2:6174</span></code></p>
316
<p>Then in 2 of your trainer nodes run this:</p>
317 318 319
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">PSERVERS</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">SERVER_ENDPOINT</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">TRAINING_ROLE</span><span class="o">=</span>TRAINER python notest_dist_fit_a_line.py
</pre></div>
</div>
320
<p><em>the reason you need to run this command twice in 2 nodes is because: in the script we set the trainer count to be 2. You can change this setting on line 50</em></p>
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
<p>Now you have 2 trainers and 1 parameter server up and running.</p>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
357
            URL_ROOT:'../../',
358 359 360
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
361
            HAS_SOURCE:  true
362 363
        };
    </script>
364 365 366
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
367
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
368

369 370 371 372
  

  
  
373
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
374
  
375 376

  
377
  
378 379 380 381 382 383
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
384 385 386

</body>
</html>