auto_gradient_check.html 23.5 KB
Newer Older
1 2


3 4


5 6 7 8 9 10 11 12
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
13
  <title>Auto Gradient Check Design &mdash; PaddlePaddle  documentation</title>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
33

34 35 36 37 38
  
        <link rel="index" title="Index"
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/> 
39 40 41 42 43 44 45 46 47 48
<script>
var _hmt = _hmt || [];
(function() {
  var hm = document.createElement("script");
  hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
  var s = document.getElementsByTagName("script")[0]; 
  s.parentNode.insertBefore(hm, s);
})();
</script>

49 50 51 52 53 54 55 56

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

57 58 59 60 61 62 63 64 65 66 67 68 69
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../index_en.html" class="icon icon-home"> PaddlePaddle
          

          
70 71
          </a>

72 73 74 75 76 77
          
            
            
          

          
78 79 80 81 82 83
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
84
</div>
85 86

          
87 88 89 90
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
<nav class="doc-menu-vertical" role="navigation">

<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_en.html">Quick Start</a></li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_en.html">Basic Concept</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_en.html">Install using pip</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_en.html">Build from Sources</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_en.html">Preparations</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_en.html">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_en.html">Use different clusters</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_en.html">Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_en.html">OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_en.html">Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_en.html">Kubernetes on AWS</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_en.html">RNN Configuration</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_en.html">Recurrent Group Tutorial</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_en.html">Layers supporting hierarchical sequence as input</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_en.html">API comparision between RNN and hierarchical RNN</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../dev/index_en.html">Development</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_en.html">Contribute Documentation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_en.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_en.html">Install, Build and Unit test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_en.html">Model Configuration</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_en.html">Parameter Setting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_en.html">Local Training and Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_en.html">Cluster Training and Prediction</a></li>
</ul>
</li>
147 148
</ul>

149 150
</nav>

151 152
        </div>
      </div>
153 154
    </nav>

155
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
156

157 158 159 160 161
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../index_en.html">PaddlePaddle</a>
      </nav>
162 163


164 165 166 167
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
168

169
 
170 171 172 173 174



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
175
    <li><a href="../index_en.html">Docs</a> &raquo;</li>
176
      
177
    <li>Auto Gradient Check Design</li>
178 179 180 181 182 183 184
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../_sources/design/auto_gradient_check.md.txt" rel="nofollow"> View page source</a>
          
        
      </li>
185
  </ul>
186
  <hr/>
187 188 189 190
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
191 192
  <div class="section" id="auto-gradient-check-design">
<span id="auto-gradient-check-design"></span><h1>Auto Gradient Check Design<a class="headerlink" href="#auto-gradient-check-design" title="Permalink to this headline"></a></h1>
193
</div>
194 195
<div class="section" id="background">
<span id="background"></span><h1>Background:<a class="headerlink" href="#background" title="Permalink to this headline"></a></h1>
196
<ul class="simple">
197 198 199 200
<li>Generally, it is easy to check whether the forward computation of an Operator is correct or not. However, backpropagation is a notoriously difficult algorithm to debug and get right because of the following challenges:<ol>
<li>The formula for backpropagation formula should be correct according to the forward computation.</li>
<li>The Implementation of the above shoule be correct in CPP.</li>
<li>It is difficult to prepare an unbiased test data.</li>
201 202
</ol>
</li>
203 204 205
<li>Auto gradient checking gets a numerical gradient using forward Operator and uses it as a reference for the backward Operator&#8217;s result. It has several advantages:<ol>
<li>Numerical gradient checker only needs the forward operator.</li>
<li>The user only needs to prepare the input data for forward Operator and not worry about the backward Operator.</li>
206 207 208 209 210 211
</ol>
</li>
</ul>
</div>
<div class="section" id="mathematical-theory">
<span id="mathematical-theory"></span><h1>Mathematical Theory<a class="headerlink" href="#mathematical-theory" title="Permalink to this headline"></a></h1>
212
<p>The following documents from Stanford have a detailed explanation of how to compute the numerical gradient and why it is useful.</p>
213 214 215 216 217 218 219
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization">Gradient checking and advanced optimization(en)</a></li>
<li class="toctree-l1"><a class="reference external" href="http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96">Gradient checking and advanced optimization(cn)</a></li>
</ul>
</div>
</div>
220 221
<div class="section" id="numerical-gradient-implementation">
<span id="numerical-gradient-implementation"></span><h1>Numerical Gradient Implementation<a class="headerlink" href="#numerical-gradient-implementation" title="Permalink to this headline"></a></h1>
222 223
<div class="section" id="python-interface">
<span id="python-interface"></span><h2>Python Interface<a class="headerlink" href="#python-interface" title="Permalink to this headline"></a></h2>
224
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">get_numerical_gradient</span><span class="p">(</span><span class="n">op</span><span class="p">,</span>
225 226 227 228 229 230
                         <span class="n">input_values</span><span class="p">,</span>
                         <span class="n">output_name</span><span class="p">,</span>
                         <span class="n">input_to_check</span><span class="p">,</span>
                         <span class="n">delta</span><span class="o">=</span><span class="mf">0.005</span><span class="p">,</span>
                         <span class="n">local_scope</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
231
<span class="sd">    Get Numerical Gradient for the input of an operator.</span>
232

233
<span class="sd">    :param op: C++ operator instance, could be an network.</span>
234
<span class="sd">    :param input_values: The input variables. Should be an dictionary, whose key is</span>
235
<span class="sd">    variable name, and value is a numpy array.</span>
236
<span class="sd">    :param output_name: The final output variable name.</span>
237 238 239 240
<span class="sd">    :param input_to_check: The input variable with respect to which the gradient has to be computed.</span>
<span class="sd">    :param delta: The perturbation value for numerical gradient method. The</span>
<span class="sd">    smaller the delta, the more accurate the result. But if the delta is too</span>
<span class="sd">    small, it will suffer from the numerical stability problem.</span>
241 242 243 244 245 246
<span class="sd">    :param local_scope: The local scope used for get_numeric_gradient.</span>
<span class="sd">    :return: The gradient array in numpy format.</span>
<span class="sd">    &quot;&quot;&quot;</span>
</pre></div>
</div>
</div>
247 248
<div class="section" id="explanation">
<span id="explanation"></span><h2>Explanation:<a class="headerlink" href="#explanation" title="Permalink to this headline"></a></h2>
249
<ul class="simple">
250 251
<li>Why do we need an <code class="docutils literal"><span class="pre">output_name</span></code><ul>
<li>An Operator may have multiple Outputs, one can compute an independent gradient from each Output. So the caller should specify the name of the output variable.</li>
252 253
</ul>
</li>
254 255
<li>Why do we need <code class="docutils literal"><span class="pre">input_to_check</span></code><ul>
<li>One operator can have multiple inputs. Gradient Op can calculate the gradient of these inputs at the same time. But Numerical Gradient needs to calculate them one by one. So <code class="docutils literal"><span class="pre">get_numeric_gradient</span></code> is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call <code class="docutils literal"><span class="pre">get_numeric_gradient</span></code> multiple times each with a different input.</li>
256 257 258 259 260 261
</ul>
</li>
</ul>
</div>
<div class="section" id="core-algorithm-implementation">
<span id="core-algorithm-implementation"></span><h2>Core Algorithm Implementation<a class="headerlink" href="#core-algorithm-implementation" title="Permalink to this headline"></a></h2>
262
<div class="highlight-python"><div class="highlight"><pre><span></span>    <span class="c1"># we only compute the gradient of one element a time.</span>
263
    <span class="c1"># we use a for loop to compute the gradient of each element.</span>
264
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="n">tensor_size</span><span class="p">):</span>
265 266
        <span class="c1"># get one input element using the index i.</span>
        <span class="n">original</span> <span class="o">=</span> <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">get_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
267

268 269 270
        <span class="c1"># add delta to it, run the forward op and then</span>
        <span class="c1"># get the new value of the result tensor.</span>
        <span class="n">x_pos</span> <span class="o">=</span> <span class="n">original</span> <span class="o">+</span> <span class="n">delta</span>
271 272 273
        <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">x_pos</span><span class="p">)</span>
        <span class="n">y_pos</span> <span class="o">=</span> <span class="n">get_output</span><span class="p">()</span>

274 275 276
        <span class="c1"># Subtract delta from this element, run the op again</span>
        <span class="c1"># and get the new value of the result tensor.</span>
        <span class="n">x_neg</span> <span class="o">=</span> <span class="n">original</span> <span class="o">-</span> <span class="n">delta</span>
277 278 279 280
        <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">x_neg</span><span class="p">)</span>
        <span class="n">y_neg</span> <span class="o">=</span> <span class="n">get_output</span><span class="p">()</span>

        <span class="c1"># restore old value</span>
281
        <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">original</span><span class="p">)</span>
282

283 284
        <span class="c1"># compute the gradient of this element and store</span>
        <span class="c1"># it into a numpy array.</span>
285 286 287 288 289 290 291 292
        <span class="n">gradient_flat</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">y_pos</span> <span class="o">-</span> <span class="n">y_neg</span><span class="p">)</span> <span class="o">/</span> <span class="n">delta</span> <span class="o">/</span> <span class="mi">2</span>

    <span class="c1"># reshape the gradient result to the shape of the source tensor.</span>
    <span class="k">return</span> <span class="n">gradient_flat</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">tensor_to_check</span><span class="o">.</span><span class="n">get_dims</span><span class="p">())</span>
</pre></div>
</div>
</div>
</div>
293 294
<div class="section" id="auto-gradient-check-framework">
<span id="auto-gradient-check-framework"></span><h1>Auto Gradient Check Framework<a class="headerlink" href="#auto-gradient-check-framework" title="Permalink to this headline"></a></h1>
295
<p>Each Operator Kernel has three kinds of Gradient:</p>
296 297 298
<ol class="simple">
<li>Numerical gradient</li>
<li>CPU kernel gradient</li>
299
<li>GPU kernel gradient (if supported by the device)</li>
300
</ol>
301
<p>The numerical gradient only relies on the forward Operator, so we use the numerical gradient as the reference value. The gradient checking is performed in the following three steps:</p>
302
<ol class="simple">
303 304 305
<li>Calculate the numerical gradient</li>
<li>Calculate CPU kernel gradient with the backward Operator and compare it with the numerical gradient.</li>
<li>Calculate GPU kernel gradient with the backward Operator and compare it with the numeric gradient. (if supported)</li>
306 307 308 309 310 311 312 313 314 315 316 317 318 319
</ol>
<div class="section" id="python-interface">
<span id="id1"></span><h2>Python Interface<a class="headerlink" href="#python-interface" title="Permalink to this headline"></a></h2>
<div class="highlight-python"><div class="highlight"><pre><span></span>    <span class="k">def</span> <span class="nf">check_grad</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
                   <span class="n">forward_op</span><span class="p">,</span>
                   <span class="n">input_vars</span><span class="p">,</span>
                   <span class="n">inputs_to_check</span><span class="p">,</span>
                   <span class="n">output_name</span><span class="p">,</span>
                   <span class="n">no_grad_set</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
                   <span class="n">only_cpu</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
                   <span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.005</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param forward_op: used to create backward_op</span>
<span class="sd">        :param input_vars: numpy value of input variable. The following</span>
320 321 322
<span class="sd">          computation will use these variables.</span>
<span class="sd">        :param inputs_to_check: the input variable with respect to which the</span>
<span class="sd">          gradient will be computed.</span>
323
<span class="sd">        :param output_name: The final output variable name.</span>
324
<span class="sd">        :param max_relative_error: The relative tolerance parameter.</span>
325
<span class="sd">        :param no_grad_set: used to create backward ops</span>
326 327 328 329 330 331
<span class="sd">        :param only_cpu: only compute and check gradient on cpu kernel.</span>
<span class="sd">        :return:</span>
<span class="sd">        &quot;&quot;&quot;</span>
</pre></div>
</div>
</div>
332 333 334
<div class="section" id="how-to-check-if-two-numpy-arrays-are-close-enough">
<span id="how-to-check-if-two-numpy-arrays-are-close-enough"></span><h2>How to check if two numpy arrays are close enough?<a class="headerlink" href="#how-to-check-if-two-numpy-arrays-are-close-enough" title="Permalink to this headline"></a></h2>
<p>if <code class="docutils literal"><span class="pre">abs_numerical_grad</span></code> is nearly zero, then use absolute error for numerical_grad.</p>
335
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">numerical_grad</span> <span class="o">=</span> <span class="o">...</span>
336 337
<span class="n">operator_grad</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">scope</span><span class="o">.</span><span class="n">find_var</span><span class="p">(</span><span class="n">grad_var_name</span><span class="p">(</span><span class="n">name</span><span class="p">))</span><span class="o">.</span><span class="n">get_tensor</span><span class="p">())</span>

338
<span class="n">abs_numerical_grad</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">numerical_grad</span><span class="p">)</span>
339 340
<span class="c1"># if abs_numerical_grad is nearly zero, then use abs error for</span>
<span class="c1"># numeric_grad, instead of relative error.</span>
341
<span class="n">abs_numerical_grad</span><span class="p">[</span><span class="n">abs_numerical_grad</span> <span class="o">&lt;</span> <span class="mf">1e-3</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
342

343
<span class="n">diff_mat</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">abs_numerical_grad</span> <span class="o">-</span> <span class="n">operator_grad</span><span class="p">)</span> <span class="o">/</span> <span class="n">abs_numerical_grad</span>
344 345 346 347 348
<span class="n">max_diff</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">diff_mat</span><span class="p">)</span>
</pre></div>
</div>
<div class="section" id="notes">
<span id="notes"></span><h3>Notes:<a class="headerlink" href="#notes" title="Permalink to this headline"></a></h3>
349
<p>The Input data for auto gradient checker should be reasonable to avoid numerical stability problem.</p>
350
</div>
351 352
<div class="section" id="references">
<span id="references"></span><h3>References:<a class="headerlink" href="#references" title="Permalink to this headline"></a></h3>
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization">Gradient checking and advanced optimization(en)</a></li>
<li class="toctree-l1"><a class="reference external" href="http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96">Gradient checking and advanced optimization(cn)</a></li>
</ul>
</div>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
398
            HAS_SOURCE:  true
399 400 401 402 403 404
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
405

406 407 408 409 410 411
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
412

413
  
414 415 416 417 418 419 420
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
421 422 423

</body>
</html>