fused_gemm_epilogue_op.cc 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

16
#include "paddle/fluid/operators/fused/fused_gemm_epilogue_op.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"

namespace paddle {
namespace operators {

class FusedGemmEpilogueOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedGemmEpilogueOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "FusedGemmEpilogueOp");
31 32 33 34
    OP_INOUT_CHECK(
        ctx->HasInput("Bias"), "Output", "Bias", "FusedGemmEpilogueOp");
    OP_INOUT_CHECK(
        ctx->HasOutput("Out"), "Output", "Out", "FusedGemmEpilogueOp");
35 36 37 38 39 40 41 42 43

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto bias_dims = ctx->GetInputDim("Bias");

    auto trans_x = ctx->Attrs().Get<bool>("trans_x");
    auto trans_y = ctx->Attrs().Get<bool>("trans_y");

    PADDLE_ENFORCE_EQ(
44 45
        y_dims.size(),
        2,
46 47 48 49 50 51
        platform::errors::InvalidArgument(
            "The Input tensor Y's dimension of FusedGemmEpilogueOp "
            " should be 2, but got %d.",
            y_dims.size()));

    PADDLE_ENFORCE_GE(
52 53
        x_dims.size(),
        2,
54 55 56 57 58 59
        platform::errors::InvalidArgument(
            "The Input tensor X's dimension of FusedGemmEpilogueOp "
            " should be >= 2, but got %d.",
            x_dims.size()));

    PADDLE_ENFORCE_EQ(
60 61
        bias_dims.size(),
        1,
62 63 64 65 66
        platform::errors::InvalidArgument(
            "The Input tensor bias's dimension of FusedGemmEpilogueOp "
            " should be == 1, but got %d.",
            bias_dims.size()));

67 68
    PADDLE_ENFORCE_EQ(bias_dims[0],
                      trans_y ? y_dims[0] : y_dims[1],
69 70 71 72
                      platform::errors::InvalidArgument(
                          "The Input tensor bias's dimension 0"
                          " should be == Y[-1], but got bias's shape = [%s] "
                          "and Y's shape = [%s]",
73 74
                          bias_dims,
                          y_dims));
75 76 77 78 79 80 81 82

    auto x_mat_dims =
        phi::flatten_to_2d(x_dims, trans_x ? 1 : x_dims.size() - 1);

    int K_from_x = trans_x ? x_mat_dims[0] : x_mat_dims[1];
    int K_from_y = trans_y ? y_dims[1] : y_dims[0];

    PADDLE_ENFORCE_EQ(
83 84
        K_from_x,
        K_from_y,
85 86 87
        platform::errors::InvalidArgument(
            "The last dimension of X should be equal with Y's first dimension."
            "But received X[-1] = [%d], Y[0] = [%d].",
88 89
            K_from_x,
            K_from_y));
90 91 92 93 94 95

    auto activation = ctx->Attrs().Get<std::string>("activation");

    if ((activation != "relu") && (activation != "gelu") &&
        (activation != "none")) {
      PADDLE_ENFORCE_EQ(
96 97
          true,
          false,
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
          platform::errors::InvalidArgument(
              "The activation attribute of fused_gemm_epilogue op should be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation=%s.",
              activation));
    }

    if (activation == "none" && ctx->HasOutput("ReserveSpace")) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The ReserveSpace would not be used when activation = \"none\""));
    }

    // cublasLt's restriction for auxiliary.
    if (ctx->HasOutput("ReserveSpace") && activation != "none") {
      int min_size_of_n = activation == "relu" ? 128 : 8;
      int N_size = trans_y ? y_dims[0] : y_dims[1];
114 115
      PADDLE_ENFORCE_EQ(N_size % min_size_of_n,
                        0,
116 117 118 119
                        platform::errors::InvalidArgument(
                            "The output dimension N (X(MxK) * Y(KxN) = C(MxN)) "
                            "should be multiple of %d when auxiliary_key given "
                            "and activation=%s, but got N = %d.",
120 121 122
                            min_size_of_n,
                            activation,
                            N_size));
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    }

    std::vector<int64_t> out_dims;
    out_dims.reserve(static_cast<size_t>(x_dims.size()));
    if (trans_x) {
      for (int i = 1; i < x_dims.size(); ++i) out_dims.push_back(x_dims[i]);
    } else {
      for (int i = 0; i < x_dims.size() - 1; ++i) out_dims.push_back(x_dims[i]);
    }

    if (trans_y) {
      out_dims.push_back(y_dims[0]);
    } else {
      out_dims.push_back(y_dims[1]);
    }

    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
140 141

    if (ctx->HasOutput("ReserveSpace")) {
142 143 144 145
      ctx->SetOutputDim("ReserveSpace", phi::make_ddim(out_dims));
    }
  }

146
  phi::KernelKey GetExpectedKernelType(
147 148
      const framework::ExecutionContext& ctx) const {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
149
    return phi::KernelKey(data_type, ctx.GetPlace());
150 151 152 153 154 155 156 157 158 159 160 161
  }
};

class FusedGemmEpilogueOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor X of Out = Act((X * Y) + Bias).");
    AddInput("Y", "The input tensor Y of Out = Act((X * Y) + Bias).");
    AddInput("Bias", "The input tensor bias of Out = Act((X * Y) + Bias).");

    AddOutput("Out", "The output tensor Out of Out = Act((X * Y) + Bias).");
    AddOutput("ReserveSpace",
162 163 164
              R"DOC(Reserve GPU space to place
        auxiliary data pointer. It is used to pass auxiliary data pointer
        for fused_gemm_epilogue op. If not given (empty string), the
165 166 167 168 169 170
        auxiliary mode would not be enable.)DOC")
        .AsDispensable()
        .AsExtra();

    AddAttr<bool>(
        "trans_x",
171 172 173
        R"DOC((bool, default false), Whether to transpose input tensor X
    or not. The input tensor X coulbe be more than two dimension. When
    set trans_x=true, it would fully reverse X. For instant: X with shpae
174 175 176 177
    [d0, d1, d2, d3] -> [d3, d2, d1, d0].)DOC")
        .SetDefault(false);
    AddAttr<bool>(
        "trans_y",
178 179 180
        R"DOC((bool, default false), Whether to transpose input tensor Y
    or not. The input tensor Y should be two dimension. When
    set trans_y=true, it would transpose Y. For instant: Y with shpae
181 182 183 184 185
    [d0, d1] -> [d1, d0].)DOC")
        .SetDefault(false);

    AddAttr<std::string>(
        "activation",
186 187
        R"DOC((string, default none), The activation function. It could be
    one of {none, relu, gelu}. When none is given, Act would be null
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    operations)DOC")
        .SetDefault("none");

    AddComment(R"DOC(
FusedGemmEpilogue Operator
This operator is used to perform Activeation(Elementwise_add(Matmul(X, Y), bias)).
It is equal to paddle.nn.Linear + Activation (None, ReLU or GeLU).

Note:
X could be more than two dimension and would be flatten to 2D for computing.
X with shape [d0, d1, d2, d3] -> X_2D with shape [d0*d1*d2, d3]
)DOC");
  }
};

class FusedGemmEpilogueGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
209 210
    OP_INOUT_CHECK(
        ctx->HasInput("DOut"), "Input", "DOut", "FusedGemmEpilogueGradOp");
211 212 213 214 215 216 217 218
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedGemmEpilogueGradOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "FusedGemmEpilogueGradOp");
    OP_INOUT_CHECK(ctx->HasOutput("DY"), "Output", "DY", "FusedGemmEpilogueOp");

    auto dout_dims = ctx->GetInputDim("DOut");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

219 220 221
    auto trans_x = ctx->Attrs().Get<bool>("trans_x");
    auto trans_y = ctx->Attrs().Get<bool>("trans_y");

222
    PADDLE_ENFORCE_GE(
223 224
        dout_dims.size(),
        2,
225 226 227 228 229 230
        platform::errors::InvalidArgument(
            "The Input tensor DOut's dimension of FusedGemmEpilogueGradOp "
            " should be >= 2, but got %d.",
            dout_dims.size()));

    PADDLE_ENFORCE_EQ(
231 232
        y_dims.size(),
        2,
233 234 235 236 237 238
        platform::errors::InvalidArgument(
            "The Input tensor Y's dimension of FusedGemmEpilogueGradOp "
            " should be 2, but got %d.",
            y_dims.size()));

    PADDLE_ENFORCE_GE(
239 240
        x_dims.size(),
        2,
241 242 243 244 245 246
        platform::errors::InvalidArgument(
            "The Input tensor X's dimension of FusedGemmEpilogueGradOp "
            " should be >= 2, but got %d.",
            x_dims.size()));

    PADDLE_ENFORCE_EQ(
247 248
        dout_dims.size(),
        x_dims.size(),
249 250 251 252
        platform::errors::InvalidArgument(
            "The Input tensor DOut's and X's dimension of "
            "FusedGemmEpilogueGradOp "
            " should be the same, but got DOut's dim = %d and X's = %d.",
253 254
            dout_dims.size(),
            x_dims.size()));
255 256 257 258 259 260

    auto dout_mat_dims = phi::flatten_to_2d(dout_dims, dout_dims.size() - 1);

    auto x_mat_dims = phi::flatten_to_2d(x_dims, x_dims.size() - 1);

    PADDLE_ENFORCE_EQ(
261 262
        dout_mat_dims[1],
        trans_y ? y_dims[0] : y_dims[1],
263 264 265
        platform::errors::InvalidArgument(
            "The last dimension of DOut should be equal with Y's last"
            "dimension. But received DOut[-1] = [%d], Y[1] = [%d].",
266 267
            dout_mat_dims[1],
            y_dims[1]));
268 269

    PADDLE_ENFORCE_EQ(
270 271
        dout_mat_dims[0],
        trans_x ? x_mat_dims[1] : x_mat_dims[0],
272 273 274
        platform::errors::InvalidArgument(
            "The first dimension of DOut should be equal with X's first"
            "dimension. But received DOut[0] = [%d], Y[0] = [%d].",
275 276
            dout_mat_dims[0],
            x_mat_dims[0]));
277 278 279 280 281

    auto activation_grad = ctx->Attrs().Get<std::string>("activation_grad");
    if ((activation_grad != "relu_grad") && (activation_grad != "gelu_grad") &&
        (activation_grad != "none")) {
      PADDLE_ENFORCE_EQ(
282 283
          true,
          false,
284 285 286 287 288 289 290 291
          platform::errors::InvalidArgument(
              "The activation attribute of fused_gemm_epilogue op should be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation=%s.",
              activation_grad));
    }

    if (activation_grad != "none" && !ctx->HasInput("ReserveSpace")) {
292 293
      PADDLE_ENFORCE_EQ(true,
                        false,
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
                        platform::errors::InvalidArgument(
                            "The ReserveSpace should not be empty. "
                            "when activation_grad == {relu_grad, gelu_grad}."));
    }

    if (ctx->HasOutput("DX")) {
      std::vector<int64_t> dx_dims;
      dx_dims.reserve(static_cast<size_t>(x_dims.size()));
      for (int i = 0; i < x_dims.size(); ++i) {
        dx_dims.push_back(x_dims[i]);
      }
      ctx->SetOutputDim("DX", phi::make_ddim(dx_dims));
    }

    std::vector<int64_t> dy_dims(y_dims.Get(), y_dims.Get() + y_dims.size());
    ctx->SetOutputDim("DY", phi::make_ddim(dy_dims));

    if (ctx->HasOutput("DBias")) {
      std::vector<int64_t> dbias_dims;
313
      dbias_dims.push_back(trans_y ? y_dims[0] : y_dims[1]);
314 315 316 317
      ctx->SetOutputDim("DBias", phi::make_ddim(dbias_dims));
    }
  }

318
  phi::KernelKey GetExpectedKernelType(
319 320
      const framework::ExecutionContext& ctx) const {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
321
    return phi::KernelKey(data_type, ctx.GetPlace());
322 323 324 325 326 327 328 329 330 331 332
  }
};

class FusedGemmEpilogueGradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("DOut",
             "The input grad tensor to Out of Out = (Act(X) * Y) + bias");
    AddInput("X", "The input tensor X of Out = (Act(X) * Y) + bias");
    AddInput("Y", "The input tensor Y of Out = (Act(X) * Y) + bias");
    AddInput("ReserveSpace",
333 334 335
             R"DOC(A GPU space to fetch
        auxiliary data pointer. It is used to pass auxiliary data pointer
        for fused_gemm_epilogue_grad op. If not given (empty string), the
336 337 338 339 340 341 342 343 344 345
        auxiliary mode would not be enable.)DOC")
        .AsDispensable();

    AddOutput("DX", "The output grad tensor to X of Out = (Act(X) * Y) + bias.")
        .AsDispensable();
    AddOutput("DY",
              "The output grad tensor to Y of Out = (Act(X) * Y) + bias.");
    AddOutput("DBias",
              "The output grad tensor to bias of Out = (Act(X) * Y) + bias.")
        .AsDispensable();
346 347
    AddAttr<bool>(
        "trans_x",
348 349 350
        R"DOC((bool, default false), Whether to transpose input tensor X
    or not. The input tensor X coulbe be more than two dimension. When
    set trans_x=true, it would fully reverse X. For instant: X with shpae
351 352 353 354
    [d0, d1, d2, d3] -> [d3, d2, d1, d0].)DOC")
        .SetDefault(false);
    AddAttr<bool>(
        "trans_y",
355 356 357
        R"DOC((bool, default false), Whether to transpose input tensor Y
    or not. The input tensor Y should be two dimension. When
    set trans_y=true, it would transpose Y. For instant: Y with shpae
358 359
    [d0, d1] -> [d1, d0].)DOC")
        .SetDefault(false);
360 361 362

    AddAttr<std::string>(
        "activation_grad",
363 364
        R"DOC((string, default none), The backward activation function. It could be
    one of {none, relu_grad, gelu_grad}. When none is given, The backward Act would
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    be null operations)DOC")
        .SetDefault("none");

    AddComment(R"DOC(
FusedGemmEpilogueGrad Operator
This operator is used to perform backward of Elementwise_add(Matmul(Activeation(X), Y), bias).
It is equal to Activation (None, ReLU or GeLU) + paddle.nn.Linear.

Note:
X could be more than two dimension and would be flatten to 2D for computing.
X with shape [d0, d1, d2, d3] -> X_2D with shape [d0*d1*d2, d3]
)DOC");
  }
};

380 381 382 383 384 385 386 387 388 389 390 391
template <typename T>
class FusedGemmEpilogueOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    const auto& act_type = this->template Attr<std::string>("activation");

    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
392
    if (act_type != "none") {
393
      op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
394
    }
395 396 397 398 399 400 401 402 403 404
    op->SetInput("DOut", this->OutputGrad("Out"));

    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DY", this->InputGrad("Y"));
    op->SetOutput("DBias", this->InputGrad("Bias"));

    op->SetAttrMap(this->Attrs());
  }
};

405 406 407 408
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
409
REGISTER_OPERATOR(
410 411
    fused_gemm_epilogue,
    ops::FusedGemmEpilogueOp,
412 413 414
    ops::FusedGemmEpilogueOpMaker,
    ops::FusedGemmEpilogueOpGradMaker<paddle::framework::OpDesc>,
    ops::FusedGemmEpilogueOpGradMaker<paddle::imperative::OpBase>);
415 416
REGISTER_OPERATOR(fused_gemm_epilogue_grad,
                  ops::FusedGemmEpilogueGradOp,
417
                  ops::FusedGemmEpilogueGradOpMaker);