amp_kernel.cu 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/amp_kernel.h"

#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/impl/amp_kernel_impl.h"

#include "paddle/fluid/memory/memory.h"

namespace phi {

// Utils

template <typename T>
__global__ void InverseAndMemset(const T* s, T* o, bool* found_inf) {
  *o = 1.0 / *s;
  *found_inf = false;
}

template <typename T, typename MT>
__global__ void CheckFiniteAndUnscale(const T** xs,
                                      const MT* scale,
                                      int64_t size,
                                      int64_t* starts,
                                      bool* found_inf,
                                      T** outs) {
  const int64_t tid = threadIdx.x + blockIdx.x * blockDim.x;

  // copy starts array from global memory to shared memory
  extern __shared__ int64_t s_starts[];
  for (int i = threadIdx.x; i <= size; i += blockDim.x) {
    s_starts[i] = starts[i];
  }
  __syncthreads();

  const int64_t num = s_starts[size];
  int xs_index = 0;
  bool local_found_inf = false;
  const MT local_scale = *scale;
  for (int64_t idx = tid; idx < num; idx += gridDim.x * blockDim.x) {
    // get the "out" index of "id"
    // For example:
    // idx = 15, starts = [0, 10, 10, 20, 30]
    // because 10 <= idx < 20 ==>
    // the idx element locate in the 3rd tensor (notice the 2nd tensor size is
    // 0)
    int next_xs_index = xs_index;
    while (idx >= s_starts[next_xs_index]) next_xs_index++;
    xs_index = next_xs_index - 1;

    // get in data and out data
    const T* in = xs[xs_index];
    T* out = outs[xs_index];
    int64_t in_idx = idx - s_starts[xs_index];

    // Unscale
    MT val = static_cast<MT>(in[in_idx]) * local_scale;
    T narrow_val = static_cast<T>(val);
    out[in_idx] = narrow_val;

    // CheckFinite
    if (!isfinite(narrow_val)) {
      local_found_inf = true;
    }
  }
  if (local_found_inf) {
    *found_inf = true;
  }
}

template <typename T, typename FoundNanInfFlagT>
__global__ void GpuUpdateLossScaling(const FoundNanInfFlagT found_inf_data,
                                     const T* pre_loss_scaling_data,
                                     const int* good_in_data,
                                     const int* bad_in_data,
                                     const int incr_every_n_steps,
                                     const int decr_every_n_nan_or_inf,
                                     const float incr_ratio,
                                     const float decr_ratio,
                                     T* updated_loss_scaling_data,
                                     int* good_out_data,
                                     int* bad_out_data) {
  Update<T>(found_inf_data,
            pre_loss_scaling_data,
            good_in_data,
            bad_in_data,
            incr_every_n_steps,
            decr_every_n_nan_or_inf,
            incr_ratio,
            decr_ratio,
            updated_loss_scaling_data,
            good_out_data,
            bad_out_data);
}

template <typename T>
__global__ void FusedFillIf(T** outs,
                            const size_t xs_size,
                            const int64_t* starts,
                            const T value,
                            const bool* has_inf) {
  if (!(*has_inf)) return;

  const int tid = threadIdx.x + blockIdx.x * blockDim.x;

  // copy starts array from global memory to shared memory
  extern __shared__ int64_t s_starts[];
  for (int i = threadIdx.x; i <= xs_size; i += blockDim.x) {
    s_starts[i] = starts[i];
  }
  __syncthreads();

  const int64_t total_num = s_starts[xs_size];
  int out_index = 0;

  for (int64_t id = tid; id < total_num; id += blockDim.x * gridDim.x) {
    // get the "out" index of "id"
    // For example:
    // id = 15, starts = [0, 10, 10, 20, 30]
    // because 10 <= id < 20 ==>
    // the id element locate in the 3rd tensor (notice the 2nd tensor size is 0)
    int next_out_index = out_index;
    while (id >= s_starts[next_out_index]) next_out_index++;
    out_index = next_out_index - 1;

    // get data pointer and index
    T* out_data = outs[out_index];
    int64_t idx = id - s_starts[out_index];

    // set value
    out_data[idx] = value;
  }
}

template <typename T>
class LazyZeros<phi::GPUContext, T> {
 public:
  void operator()(const phi::GPUContext& dev_ctx,
                  const bool* found_inf_data,
                  const std::vector<const DenseTensor*>& xs,
                  const std::vector<DenseTensor*>& outs) {
    size_t xs_size = xs.size();
    if (xs_size == 0) return;

    const auto& cpu_place = phi::CPUPlace();
    // alloc each tensor's start index and copy to device
    auto h_in_starts_mem =
        paddle::memory::Alloc(cpu_place, (xs_size + 1) * sizeof(int64_t));
    int64_t* h_starts = reinterpret_cast<int64_t*>(h_in_starts_mem->ptr());

165 166 167 168
    auto d_in_starts_mem = paddle::memory::Alloc(
        dev_ctx.GetPlace(),
        (xs_size + 1) * sizeof(int64_t),
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    int64_t* d_starts = reinterpret_cast<int64_t*>(d_in_starts_mem->ptr());

    // the start index value of each tensor is
    // the sum of previous tensor's size. For example:
    // outs = [10, 0, 10, 10] ==> starts = [0, 10, 10, 20, 30]
    h_starts[0] = 0;
    for (int i = 0; i < xs_size; i++) {
      h_starts[i + 1] = h_starts[i] + outs[i]->numel();
    }
    paddle::memory::Copy(dev_ctx.GetPlace(),
                         d_starts,
                         cpu_place,
                         h_starts,
                         (xs_size + 1) * sizeof(int64_t),
                         dev_ctx.stream());

    // copy each tensor of "outs" data address array to device
    auto h_out_addrs_mem =
        paddle::memory::Alloc(cpu_place, xs_size * sizeof(T*));
    T** h_out_addrs = reinterpret_cast<T**>(h_out_addrs_mem->ptr());

190 191 192 193
    auto d_out_addrs_mem = paddle::memory::Alloc(
        dev_ctx.GetPlace(),
        xs_size * sizeof(T*),
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    T** d_out_addrs = reinterpret_cast<T**>(d_out_addrs_mem->ptr());

    for (size_t i = 0; i < xs_size; ++i) {
      h_out_addrs[i] = dev_ctx.Alloc<T>(outs[i]);
    }
    paddle::memory::Copy(dev_ctx.GetPlace(),
                         d_out_addrs,
                         cpu_place,
                         h_out_addrs,
                         xs_size * sizeof(T*),
                         dev_ctx.stream());

    // launch cuda kernel
    int64_t total_num = h_starts[xs_size];
    int64_t threads_per_block = std::min(static_cast<int64_t>(1024), total_num);
    int64_t elements_per_block =
        threads_per_block * 50;  // each thread deal with 50 data
    int64_t blocks_per_grid =
        (total_num + elements_per_block - 1) / elements_per_block;
    FusedFillIf<T><<<blocks_per_grid,
                     threads_per_block,
                     (xs_size + 1) * sizeof(int64_t),
                     dev_ctx.stream()>>>(
        d_out_addrs, xs_size, d_starts, static_cast<T>(0), found_inf_data);
  }
};

template <typename T, bool IsFoundInfOnCPU>
class UpdateLossScalingFunctor<phi::GPUContext, T, IsFoundInfOnCPU> {
 public:
  void operator()(const phi::GPUContext& dev_ctx,
                  const bool* found_inf_data,
                  const T* pre_loss_scaling_data,
                  const int* good_in_data,
                  const int* bad_in_data,
                  const int incr_every_n_steps,
                  const int decr_every_n_nan_or_inf,
                  const float incr_ratio,
                  const float decr_ratio,
                  T* updated_loss_scaling_data,
                  int* good_out_data,
                  int* bad_out_data) const {
    if (IsFoundInfOnCPU) {
      GpuUpdateLossScaling<T>
          <<<1, 1, 0, dev_ctx.stream()>>>(*found_inf_data,
                                          pre_loss_scaling_data,
                                          good_in_data,
                                          bad_in_data,
                                          incr_every_n_steps,
                                          decr_every_n_nan_or_inf,
                                          incr_ratio,
                                          decr_ratio,
                                          updated_loss_scaling_data,
                                          good_out_data,
                                          bad_out_data);
    } else {
      GpuUpdateLossScaling<T>
          <<<1, 1, 0, dev_ctx.stream()>>>(found_inf_data,
                                          pre_loss_scaling_data,
                                          good_in_data,
                                          bad_in_data,
                                          incr_every_n_steps,
                                          decr_every_n_nan_or_inf,
                                          incr_ratio,
                                          decr_ratio,
                                          updated_loss_scaling_data,
                                          good_out_data,
                                          bad_out_data);
    }
  }
};

// Kernels

template <typename T, typename Context>
void CheckFiniteAndUnscaleKernel(const Context& dev_ctx,
                                 const std::vector<const DenseTensor*>& xs,
                                 const DenseTensor& scale,
                                 std::vector<DenseTensor*> outs,
                                 DenseTensor* found_infinite) {
  using MPDType = typename phi::dtype::MPTypeTrait<T>::Type;

  const MPDType* scale_data = scale.data<MPDType>();
  bool* found_inf_data = dev_ctx.template Alloc<bool>(found_infinite);

  DenseTensor inverse_scale = Empty<MPDType>(dev_ctx, {1});
  MPDType* inverse_scale_v = inverse_scale.template data<MPDType>();

  InverseAndMemset<MPDType><<<1, 1, 0, dev_ctx.stream()>>>(
      scale_data, inverse_scale_v, found_inf_data);

  size_t xs_size = xs.size();
  if (xs_size == 0) return;

  const auto& cpu_place = phi::CPUPlace();
  // calculate each tensor's start index and copy to device
  auto h_starts_tensor =
      paddle::memory::Alloc(cpu_place, (xs_size + 1) * sizeof(int64_t));
  int64_t* h_starts = reinterpret_cast<int64_t*>(h_starts_tensor->ptr());

294 295 296 297
  auto d_starts_tensor = paddle::memory::Alloc(
      dev_ctx.GetPlace(),
      (xs_size + 1) * sizeof(int64_t),
      phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
  int64_t* d_starts = reinterpret_cast<int64_t*>(d_starts_tensor->ptr());

  // the start index value of each tensor is
  // the sum of previous tensor's size. For example:
  // x = [10, 0, 10, 10] ==> starts = [0, 10, 10, 20, 30]
  h_starts[0] = 0;
  for (int i = 1; i <= xs_size; i++) {
    h_starts[i] = h_starts[i - 1] + xs[i - 1]->numel();
  }
  int64_t total_num = h_starts[xs_size];
  paddle::memory::Copy(dev_ctx.GetPlace(),
                       d_starts,
                       cpu_place,
                       h_starts,
                       (xs_size + 1) * sizeof(int64_t),
                       dev_ctx.stream());

  // copy each tensor's data address to device
  auto h_mem = paddle::memory::Alloc(cpu_place, 2 * xs_size * sizeof(T*));
  const T** h_xs = reinterpret_cast<const T**>(h_mem->ptr());
  T** h_outs = reinterpret_cast<T**>(h_mem->ptr()) + xs_size;

320 321 322 323
  auto d_mem = paddle::memory::Alloc(
      dev_ctx.GetPlace(),
      2 * xs_size * sizeof(T*),
      phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  const T** d_xs = reinterpret_cast<const T**>(d_mem->ptr());
  T** d_outs = reinterpret_cast<T**>(d_mem->ptr()) + xs_size;

  for (size_t i = 0; i < xs_size; ++i) {
    h_xs[i] = xs[i]->data<T>();
    h_outs[i] = dev_ctx.template Alloc<T>(outs[i]);
  }
  paddle::memory::Copy(dev_ctx.GetPlace(),
                       d_xs,
                       cpu_place,
                       h_xs,
                       2 * xs_size * sizeof(T*),
                       dev_ctx.stream());

  // Launch Kernel
  int threads_per_block = std::min(static_cast<int64_t>(1024), total_num);
  int elements_per_block =
      threads_per_block * 20;  // each thread deal with 20 number
  int blocks_per_grid =
      (total_num + elements_per_block - 1) / elements_per_block;
  CheckFiniteAndUnscale<T, MPDType><<<blocks_per_grid,
                                      threads_per_block,
                                      (xs_size + 1) * sizeof(int64_t),
                                      dev_ctx.stream()>>>(
      d_xs, inverse_scale_v, xs_size, d_starts, found_inf_data, d_outs);
}

}  // namespace phi

PD_REGISTER_KERNEL(check_finite_and_unscale,
                   GPU,
                   ALL_LAYOUT,
                   phi::CheckFiniteAndUnscaleKernel,
                   float,
                   double,
359 360
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
361 362 363 364 365 366 367

PD_REGISTER_KERNEL(update_loss_scaling,
                   GPU,
                   ALL_LAYOUT,
                   phi::UpdateLossScalingKernel,
                   float,
                   double,
368 369
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
370 371
  kernel->InputAt(1).SetBackend(phi::Backend::ALL_BACKEND);
}