decorator.py 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
Helin Wang 已提交
15
__all__ = [
S
sneaxiy 已提交
16
    'cache', 'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
17
    'ComposeNotAligned', 'firstn', 'xmap_readers', 'multiprocess_reader'
H
Helin Wang 已提交
18
]
19

T
tangwei12 已提交
20 21
from threading import Thread
import subprocess
Q
Qiao Longfei 已提交
22
import multiprocessing
23
import six
Q
Qiao Longfei 已提交
24
import sys
T
tangwei12 已提交
25

26
from six.moves.queue import Queue
27
from six.moves import zip_longest
28 29
from six.moves import map
from six.moves import zip
30 31
import itertools
import random
T
tangwei12 已提交
32
import zlib
M
minqiyang 已提交
33
import paddle.compat as cpt
34 35


S
sneaxiy 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
def cache(reader):
    """
    Cache the reader data into memory. 

    Be careful that this method may take long time to process, 
    and consume lots of memory. :code:`reader()` would only 
    call once. 

    Args:
        reader (generator): a reader object which yields 
            data each time.

    Returns:
S
sneaxiy 已提交
49
        generator: a decorated reader object which yields data from cached memory.
S
sneaxiy 已提交
50 51 52 53 54 55 56 57 58 59
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
60 61 62 63 64
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
    output of each data readers as arguments.

Y
Yu Yang 已提交
65 66 67 68 69
    :param func: function to use. The type of func should be (Sample) => Sample
    :type: callable
    :param readers: readers whose outputs will be used as arguments of func.
    :return: the created data reader.
    :rtype: callable
H
Helin Wang 已提交
70 71 72 73 74 75
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
76
        for e in map(func, *rs):
H
Helin Wang 已提交
77 78 79 80 81
            yield e

    return reader


H
Helin Wang 已提交
82
def shuffle(reader, buf_size):
83
    """
Y
Yu Yang 已提交
84
    Creates a data reader whose data output is shuffled.
85

H
Helin Wang 已提交
86
    Output from the iterator that created by original reader will be
87 88 89
    buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
    is determined by argument buf_size.

90
    :param reader: the original reader whose output will be shuffled.
Y
Yu Yang 已提交
91
    :type reader: callable
92
    :param buf_size: shuffle buffer size.
Y
Yu Yang 已提交
93
    :type buf_size: int
94

Y
Yu Yang 已提交
95 96
    :return: the new reader whose output is shuffled.
    :rtype: callable
97 98
    """

H
Helin Wang 已提交
99
    def data_reader():
100
        buf = []
H
Helin Wang 已提交
101
        for e in reader():
102 103 104 105 106 107 108 109 110 111 112 113
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
114
    return data_reader
115 116


H
Helin Wang 已提交
117
def chain(*readers):
118
    """
119 120
    Use the input data readers to create a chained data reader. The new created reader
    chains the outputs of input readers together as its output.
121

122 123 124 125 126 127 128 129
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
130
    The chained reader will output:
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    [[0, 0, 0], [10, 10, 10], [20, 20, 20]].

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
163 164 165

    """

H
Helin Wang 已提交
166
    def reader():
167
        rs = []
H
Helin Wang 已提交
168
        for r in readers:
169 170 171 172 173
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
174
    return reader
175 176


H
Helin Wang 已提交
177
class ComposeNotAligned(ValueError):
178 179 180
    pass


H
Helin Wang 已提交
181
def compose(*readers, **kwargs):
182 183
    """
    Creates a data reader whose output is the combination of input readers.
184

H
Helin Wang 已提交
185
    If input readers output following data entries:
186
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
187
    The composed reader will output:
188 189
    (1, 2, 3, 4, 5)

Y
Yu Yang 已提交
190 191
    :param readers: readers that will be composed together.
    :param check_alignment: if True, will check if input readers are aligned
192 193
        correctly. If False, will not check alignment and trailing outputs
        will be discarded. Defaults to True.
Y
Yu Yang 已提交
194
    :type check_alignment: bool
195

Y
Yu Yang 已提交
196
    :return: the new data reader.
197

198 199
    :raises ComposeNotAligned: outputs of readers are not aligned.
        Will not raise when check_alignment is set to False.
200 201 202 203 204 205 206 207 208
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
209
    def reader():
210
        rs = []
H
Helin Wang 已提交
211
        for r in readers:
212 213
            rs.append(r())
        if not check_alignment:
214 215
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
216
        else:
217
            for outputs in zip_longest(*rs):
218 219 220
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
221 222
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
223
                yield sum(list(map(make_tuple, outputs)), ())
224

H
Helin Wang 已提交
225
    return reader
226 227


H
Helin Wang 已提交
228
def buffered(reader, size):
229 230
    """
    Creates a buffered data reader.
231

H
Helin Wang 已提交
232 233
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
234
    as the buffer is not empty.
235

236
    :param reader: the data reader to read from.
Y
Yu Yang 已提交
237
    :type reader: callable
238
    :param size: max buffer size.
Y
Yu Yang 已提交
239
    :type size: int
240

241
    :returns: the buffered data reader.
242 243 244 245 246 247 248 249 250 251 252 253
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
254 255
    def data_reader():
        r = reader()
256
        q = Queue(maxsize=size)
257 258 259 260 261 262 263 264 265 266 267
        t = Thread(
            target=read_worker, args=(
                r,
                q, ))
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
268
    return data_reader
Y
Yu Yang 已提交
269 270


Y
Yu Yang 已提交
271
def firstn(reader, n):
Y
Yu Yang 已提交
272 273
    """
    Limit the max number of samples that reader could return.
Y
Yu Yang 已提交
274 275 276 277 278 279 280

    :param reader: the data reader to read from.
    :type reader: callable
    :param n: the max number of samples that return.
    :type n: int
    :return: the decorated reader.
    :rtype: callable
Y
Yu Yang 已提交
281 282
    """

Y
Yu Yang 已提交
283 284 285 286
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
287
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
288
            if i == n:
Y
Yu Yang 已提交
289 290 291
                break
            yield item

Y
Yu Yang 已提交
292
    return firstn_reader
293 294 295 296 297 298


class XmapEndSignal():
    pass


299
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
300
    """
Z
Zeng Jinle 已提交
301 302 303 304 305 306 307 308 309 310 311 312
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
        reader (callable): a data reader which yields the data. 
        process_num (int): thread number to handle original sample.
        buffer_size (int): size of the queue to read data in. 
        order (bool): whether to keep the data order from original reader. 
            Default False.

    Returns:
        callable: a decorated reader with data mapping. 
313 314
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
315

316 317 318 319 320
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
321

322 323 324 325
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
326 327
            in_queue.put((in_order, i))
            in_order += 1
328
        in_queue.put(end)
329 330 331 332 333 334 335 336 337 338 339

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
340

341 342 343 344 345 346 347 348 349 350
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
351
            out_order[0] += 1
352 353 354
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
355 356

    def xreader():
357 358
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
359 360 361 362 363 364 365 366 367 368 369
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
        args = (in_queue, out_queue, mapper, out_order) if order else (
            in_queue, out_queue, mapper)
        workers = []
370
        for i in range(process_num):
371 372 373 374 375 376
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

377 378 379 380 381 382 383 384 385 386 387 388 389
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
390 391


Q
Qiao Longfei 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
    multiprocess_reader use python multi process to read data from readers
    and then use multiprocess.Queue or multiprocess.Pipe to merge all
    data. The process number is equal to the number of input readers, each
    process call one reader.

    Multiprocess.Queue require the rw access right to /dev/shm, some
    platform does not support.

    you need to create multiple readers first, these readers should be independent
    to each other so that each process can work independently.

    An example:

    .. code-block:: python

        reader0 = reader(["file01", "file02"])
        reader1 = reader(["file11", "file12"])
        reader1 = reader(["file21", "file22"])
        reader = multiprocess_reader([reader0, reader1, reader2],
            queue_size=100, use_pipe=False)
    """

    try:
        import ujson as json
    except Exception as e:
        sys.stderr.write("import ujson error: " + str(e) + " use json\n")
        import json

    assert type(readers) is list and len(readers) > 0

    def _read_into_queue(reader, queue):
425 426 427 428 429 430 431 432 433
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447

    def queue_reader():
        queue = multiprocessing.Queue(queue_size)
        for reader in readers:
            p = multiprocessing.Process(
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = queue.get()
            if sample is None:
                finish_num += 1
448 449
            elif sample == "":
                raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
450 451 452 453
            else:
                yield sample

    def _read_into_pipe(reader, conn):
454 455 456 457 458 459 460 461 462 463 464
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

    def pipe_reader():
        conns = []
        for reader in readers:
            parent_conn, child_conn = multiprocessing.Pipe()
            conns.append(parent_conn)
            p = multiprocessing.Process(
                target=_read_into_pipe, args=(reader, child_conn))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
488 489 490 491
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
                    raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
492 493 494 495 496 497 498
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader