op_test.py 20.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15
import unittest
import numpy as np
16
import random
17
import itertools
Q
Qiao Longfei 已提交
18
import paddle.v2.fluid.core as core
Y
Yu Yang 已提交
19
import collections
F
fengjiayi 已提交
20
from paddle.v2.fluid.backward import append_backward
Q
Qiao Longfei 已提交
21 22 23
from paddle.v2.fluid.op import Operator
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.framework import Program, OpProtoHolder
24 25


26 27 28 29 30 31 32 33 34
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
    for i in xrange(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


Q
qijun 已提交
35
def create_op(scope, op_type, inputs, outputs, attrs):
36 37
    kwargs = dict()

Y
Yu Yang 已提交
38
    def __create_var__(name, var_name):
Q
QI JUN 已提交
39
        scope.var(var_name).get_tensor()
Y
Yu Yang 已提交
40 41
        kwargs[name].append(var_name)

Q
qijun 已提交
42
    for in_name, in_dup in Operator.get_op_inputs(op_type):
43 44 45 46
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
47 48
                for item in sub_in:
                    sub_in_name, _ = item[0], item[1]
Y
Yu Yang 已提交
49
                    __create_var__(in_name, sub_in_name)
50
            else:
Y
Yu Yang 已提交
51
                __create_var__(in_name, in_name)
52

Q
qijun 已提交
53
    for out_name, out_dup in Operator.get_op_outputs(op_type):
54 55 56
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
57
                sub_out = outputs[out_name]
58 59
                for item in sub_out:
                    sub_out_name, _ = item[0], item[1]
Y
Yu Yang 已提交
60
                    __create_var__(out_name, sub_out_name)
61
            else:
Y
Yu Yang 已提交
62
                __create_var__(out_name, out_name)
63

Q
qijun 已提交
64
    for attr_name in Operator.get_op_attr_names(op_type):
Q
qijun 已提交
65 66
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]
67

68 69 70 71
    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
Y
Yu Yang 已提交
72
    def __set_input__(var_name, var):
73 74 75 76 77 78 79 80 81 82 83
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
                tensor.set_lod(var[1])
                var = var[0]
            tensor.set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)
Y
Yu Yang 已提交
84

Q
qijun 已提交
85
    for in_name, in_dup in Operator.get_op_inputs(op.type()):
86 87 88
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
89 90
                for item in sub_in:
                    sub_in_name, sub_in_val = item[0], item[1]
Y
Yu Yang 已提交
91
                    __set_input__(sub_in_name, sub_in_val)
92
            else:
Y
Yu Yang 已提交
93
                __set_input__(in_name, inputs[in_name])
94 95


96 97
def get_numeric_gradient(place,
                         scope,
98 99 100
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
101
                         output_names,
102 103
                         delta=0.005,
                         in_place=False):
Y
Yu Yang 已提交
104
    # FIXME: change this method by compile time concepts
105
    set_input(scope, op, inputs, place)
106 107 108 109 110

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

    def get_output():
Y
Yu Yang 已提交
111
        sum = []
Y
Yancey 已提交
112
        for output_name in output_names:
113
            op.run(scope, place)
Y
Yu Yang 已提交
114 115 116
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
        return np.array(sum).mean()
117 118 119

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    tensor_to_check_dtype = tensor_to_check.dtype()
    if tensor_to_check_dtype == core.DataType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.DataType.FP64:
        tensor_to_check_dtype = np.float64
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float32:
            return tensor.get_float_element(i)
        else:
            return tensor.get_double_element(i)

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float32:
            tensor.set_float_element(i, e)
        else:
            tensor.set_double_element(i, e)

143 144 145 146
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        if in_place:
147
            set_input(scope, op, inputs, place)
148 149

        # get one input element throw it's index i.
150
        origin = __get_elem__(tensor_to_check, i)
151 152
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
153
        __set_elem__(tensor_to_check, i, x_pos)
154 155 156
        y_pos = get_output()

        if in_place:
157
            set_input(scope, op, inputs, place)
158 159

        x_neg = origin - delta
160
        __set_elem__(tensor_to_check, i, x_neg)
161 162
        y_neg = get_output()

163
        __set_elem__(tensor_to_check, i, origin)
164 165 166 167 168
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.get_dims())


Y
Yang Yang(Tony) 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
def append_input_output(block, op_proto, np_list, is_input):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
            shape = None
            lod_level = None
        else:
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                shape = list(np_value[0].shape)
                lod_level = len(np_value[1])
            else:
                shape = list(np_value.shape)
                lod_level = 0
        return block.create_var(
            dtype="float32", shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if is_input:
            if (var_name not in np_list) and var_proto.dispensable:
                continue
            assert (var_name in np_list) or (var_proto.dispensable), \
196
                "Missing {} as input".format(var_name)
Y
Yang Yang(Tony) 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


211
class OpTest(unittest.TestCase):
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        '''Restore random seeds'''
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

Y
Yang Yang(Tony) 已提交
227 228 229 230 231 232
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
233 234 235 236 237
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_lod(np_value[1])
                    else:
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
238 239 240 241 242 243 244 245 246 247 248 249
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_lod(self.inputs[var_name][1])
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

250
    def check_output_with_place(self, place, atol):
Y
Yang Yang(Tony) 已提交
251 252 253 254 255 256 257 258 259 260 261 262
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
263 264 265
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
D
dzhwinter 已提交
279 280 281 282
        outs = exe.run(program,
                       feed=feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yang Yang(Tony) 已提交
283 284

        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
285 286 287
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
288 289 290 291 292 293 294 295 296 297
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

298 299
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
300 301 302
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
303 304
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
Y
Yang Yang(Tony) 已提交
305
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
306 307
                    actual = outs[idx]
                    actual_t = np.array(actual)
308 309
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
310 311
                    self.assertTrue(
                        np.allclose(
312
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
313 314
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
315 316
                    if isinstance(expect, tuple):
                        self.assertListEqual(
Q
QI JUN 已提交
317 318
                            actual.lod(), expect[1], "Output (" + sub_out_name +
                            ") has different lod at " + str(place))
319
            else:
Y
Yang Yang(Tony) 已提交
320
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
321 322
                actual = outs[idx]
                actual_t = np.array(actual)
323
                expect = self.outputs[out_name]
324
                expect_t = expect[0] if isinstance(expect, tuple) else expect
325 326
                self.assertTrue(
                    np.allclose(
327
                        actual_t, expect_t, atol=atol),
D
dangqingqing 已提交
328
                    "Output (" + out_name + ") has diff at " + str(place))
329
                if isinstance(expect, tuple):
Q
QI JUN 已提交
330
                    self.assertListEqual(actual.lod(), expect[1],
331 332
                                         "Output (" + out_name +
                                         ") has different lod at " + str(place))
333

334
    def check_output(self, atol=1e-5):
Q
qijun 已提交
335
        places = [core.CPUPlace()]
Y
Yang Yang(Tony) 已提交
336
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
D
dzhwinter 已提交
337
            places.append(core.CUDAPlace(0))
Q
qijun 已提交
338
        for place in places:
339
            self.check_output_with_place(place, atol)
Q
qijun 已提交
340

341 342 343 344 345 346 347 348 349 350 351 352
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
353
                return ("%s Variable %s max gradient diff %f over limit %f, "
354
                        "the first error element is %d, %f, %f") % (
355
                            msg_prefix, name, max_diff, max_relative_error,
356
                            offset, a.flatten()[offset], b.flatten()[offset])
357 358 359 360 361

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
362
                   output_names,
363
                   no_grad_set=None,
364
                   numeric_grad_delta=0.005,
365
                   in_place=False,
Q
Qiao Longfei 已提交
366 367
                   max_relative_error=0.005,
                   user_defined_grads=None):
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        places = [core.CPUPlace()]
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
                                       user_defined_grads)

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None):
386
        self.scope = core.Scope()
Q
qijun 已提交
387
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
388
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
389
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
390
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
391
                            op_attrs)
Y
Yu Yang 已提交
392

393 394 395
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
396 397 398
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
399
        numeric_grads = user_defined_grads or [
400
            get_numeric_gradient(
401
                place,
402 403 404 405
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
406
                output_names,
407
                delta=numeric_grad_delta,
408 409
                in_place=in_place) for input_to_check in inputs_to_check
        ]
410 411 412 413 414 415
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)

        self.__assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                               max_relative_error,
                               "Gradient Check On %s" % str(place))
Q
qijun 已提交
416

Y
Yu Yang 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
    @staticmethod
    def _create_var_descs_(block, var_dict):
        # FIXME: Try unify with `append_input_output`
        for param_name in var_dict:
            var = var_dict[param_name]
            if not isinstance(var, list) and not isinstance(var, tuple):
                var = [(param_name, var, None)]
            if not isinstance(var[0], list) and not isinstance(var[0], tuple):
                var = [(param_name, var[0], var[1])]

            for i, item in enumerate(var):
                if not isinstance(item[0], basestring):
                    item = [[param_name] + list(item)]
                if len(item) == 2:
431 432 433 434 435
                    if isinstance(item[1], tuple):
                        var[i] = [item[0], item[1][0], item[1][1]]
                    else:
                        # only set var name and value, set lod to None
                        var[i] = list(item) + [None]
Y
Yu Yang 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
            var_descs = [(block.create_var(
                name=name, shape=each.shape, dtype=each.dtype), each, lod)
                         for name, each, lod in var]

            yield param_name, var_descs

    @staticmethod
    def _merge_list(iterable):
        return reduce(lambda a, b: list(a) + list(b), iterable, [])

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_lod(lod)
        return tensor

    def _get_gradient(self, input_to_check, place, output_names, no_grad_set):
        prog = Program()
        block = prog.global_block()
        inputs_with_np = {
            key: value
            for (key, value) in OpTest._create_var_descs_(
                block, getattr(self, 'inputs', {}))
        }
        outputs_with_np = {
            key: val
            for (key, val) in OpTest._create_var_descs_(
                block, getattr(self, 'outputs', {}))
        }
        inputs = {
            k: [item[0] for item in inputs_with_np[k]]
            for k in inputs_with_np
        }
        outputs = {
            k: [item[0] for item in outputs_with_np[k]]
            for k in outputs_with_np
        }

Q
QI JUN 已提交
476
        op = block.append_op(
Y
Yu Yang 已提交
477 478 479 480 481
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=getattr(self, 'attrs', {}))

Q
QI JUN 已提交
482 483 484 485
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

Y
Yu Yang 已提交
486 487 488
        mean_inputs = map(block.var, output_names)

        if len(mean_inputs) == 1:
F
fengjiayi 已提交
489
            loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
Q
QI JUN 已提交
490
            op = block.append_op(
Y
Yu Yang 已提交
491
                inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
Q
QI JUN 已提交
492 493
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
494 495 496
        else:
            avg_sum = []
            for cur_loss in mean_inputs:
F
fengjiayi 已提交
497
                cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
Q
QI JUN 已提交
498
                op = block.append_op(
Y
Yu Yang 已提交
499 500 501
                    inputs={"X": [cur_loss]},
                    outputs={"Out": [cur_avg_loss]},
                    type="mean")
Q
QI JUN 已提交
502 503
                op.desc.infer_var_type(block.desc)
                op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
504 505
                avg_sum.append(cur_avg_loss)

F
fengjiayi 已提交
506
            loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
Q
QI JUN 已提交
507
            op_sum = block.append_op(
Y
Yu Yang 已提交
508
                inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
Q
QI JUN 已提交
509 510
            op_sum.desc.infer_var_type(block.desc)
            op_sum.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
511

F
fengjiayi 已提交
512
            loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
Q
QI JUN 已提交
513
            op_loss = block.append_op(
Y
Yu Yang 已提交
514 515 516 517
                inputs={"X": loss_sum},
                outputs={"Out": loss},
                type='scale',
                attrs={'scale': 1.0 / float(len(avg_sum))})
Q
QI JUN 已提交
518 519
            op_loss.desc.infer_var_type(block.desc)
            op_loss.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
520

F
fengjiayi 已提交
521
        param_grad_list = append_backward(
Y
Yu Yang 已提交
522 523 524 525 526 527 528 529 530
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        feed_dict = {
            item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place)
            for p_name in inputs_with_np for item in inputs_with_np[p_name]
        }

        fetch_list = [g for p, g in param_grad_list]
        executor = Executor(place)
D
dzhwinter 已提交
531 532 533
        return map(
            np.array,
            executor.run(prog, feed_dict, fetch_list, return_numpy=False))