control_flow.py 51.5 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yu Yang 已提交
14 15 16 17
from ..layer_helper import LayerHelper, unique_name
from ..framework import Program, Variable, Operator
from .. import core
from tensor import assign, fill_constant
D
dzhwinter 已提交
18
import contextlib
Y
Yang Yu 已提交
19
from ..registry import autodoc
D
dzhwinter 已提交
20

Q
QI JUN 已提交
21
__all__ = [
Y
Yang Yang 已提交
22 23 24 25 26
    'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard',
    'BlockGuardWithCompletion', 'StaticRNNMemoryLink', 'WhileGuard', 'While',
    'lod_rank_table', 'max_sequence_len', 'topk', 'lod_tensor_to_array',
    'array_to_lod_tensor', 'increment', 'array_write', 'create_array',
    'less_than', 'array_read', 'shrink_memory', 'array_length', 'IfElse',
Y
Yang Yang 已提交
27
    'DynamicRNN', 'ConditionalBlock', 'StaticRNN', 'reorder_lod_tensor_by_rank',
Y
Yan Chunwei 已提交
28
    'ParallelDo', 'Print'
D
dzhwinter 已提交
29 30
]

Y
Yu Yang 已提交
31

32
def split_lod_tensor(input, mask, level=0):
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    """
    **split_lod_tensor**

    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
    the input at a certain level in the tensor.

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
        level(int): The specific lod level to rank.

    Returns:
        Variable: The true branch of tensor as per the mask applied to input.
        Variable: The false branch of tensor as per the mask applied to input.

    Examples:
        .. code-block:: python

          x = layers.data(name='x', shape=[1])
          x.persistable = True

          y = layers.data(name='y', shape=[1])
          y.persistable = True

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
    """
63
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
64 65
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
66 67 68 69 70 71 72 73 74 75 76 77
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


78
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
    merges the True and False branches of the tensor into a single Output
    at a certain lod level indiacted by :math:`level`.

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
        level(int): The specific lod level to rank.

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
113
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
114
    out = helper.create_tmp_variable(dtype=in_true.dtype)
115 116 117 118 119 120 121 122 123 124 125
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
126 127 128 129 130 131 132
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
133 134
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
135 136 137 138 139 140 141 142 143 144
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
145 146 147 148 149 150 151 152 153 154 155 156
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
        print_phase (bool): Which phase to displace, including 'forward',
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
157 158

    Returns:
Y
yangyaming 已提交
159
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
160 161 162 163 164 165 166 167 168

    Examples:
        .. code-block:: python

        value = some_layer(...)
        Print(value, summarize=10,
              message="The content of some_layer: ")
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
169
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
170 171
    helper.append_op(
        type='print',
Y
yangyaming 已提交
172
        inputs={'In': input},
Y
Yan Chunwei 已提交
173 174 175 176 177 178 179 180
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
181 182 183
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
184 185 186
    return out


Y
Yu Yang 已提交
187 188
class BlockGuard(object):
    """
189 190 191 192
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
193 194
    """

195 196
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
197
            raise TypeError("BlockGuard takes a program")
198
        self.main_program = main_program
Y
Yu Yang 已提交
199 200

    def __enter__(self):
201
        self.main_program.create_block()
Y
Yu Yang 已提交
202 203

    def __exit__(self, exc_type, exc_val, exc_tb):
204
        self.main_program.rollback()
Y
Yu Yang 已提交
205 206 207 208 209
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
210
class ParallelDo(object):
211
    """
Y
Yang Yang 已提交
212
    ParallelDo class.
213

Y
Yang Yang 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    ParallelDo class is used to create a ParallelDo.
    """

    def __init__(self, places, name=None):
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
246
        return var
Y
Yang Yang 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()

        for op in current_block.ops:
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)

        params = list()
        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        return [parent_block.var(name) for name in params]

    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
283 284 285 286 287 288 289 290 291 292
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
293
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
294
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
295 296 297 298 299 300 301 302

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
303
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
304
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
305 306 307 308 309 310 311 312
            attrs={'sub_block': current_block})


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
313 314
    """

Y
Yu Yang 已提交
315
    def __init__(self, rnn):
Y
Yang Yang 已提交
316 317 318 319
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
320 321 322 323
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
324
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
325 326

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
327 328
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
329
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
Y
Yang Yang 已提交
330 331 332
        self.rnn.complete_op()
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
333 334 335 336


class StaticRNNMemoryLink(object):
    """
337 338 339 340 341 342 343 344 345 346 347 348
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
349 350 351 352 353 354 355 356 357
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
358 359 360 361 362 363
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
364 365 366 367
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

368 369
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
370 371 372 373 374 375 376 377
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
378
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
379 380 381 382 383

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

384 385 386 387 388 389 390
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
391 392 393 394 395 396 397 398 399
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
400 401
        self._assert_in_rnn_block_('memory')
        if init is None:
402
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
403
                raise ValueError(
404
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
405 406 407
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
408 409
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
410
                dtype=batch_ref.dtype,
411
                persistable=False)
Y
Yu Yang 已提交
412 413

            parent_block.append_op(
414 415
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
416 417 418
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
419
                    'shape': boot_var.shape,
F
fengjiayi 已提交
420
                    'dtype': boot_var.dtype,
421 422
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
423 424 425 426 427 428
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
429
                dtype=init.dtype,
Y
Yu Yang 已提交
430 431 432 433 434 435 436 437 438 439
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
440 441
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
442 443 444
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
445
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
446 447 448 449 450 451 452 453
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
454
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
455 456 457 458
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
459
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
460

Y
Yu Yang 已提交
461
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
462 463
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
464
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
478
        prog = self.helper.main_program
Y
Yu Yang 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

Y
Yang Yang 已提交
494
    def complete_op(self):
495 496
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
536
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
537 538 539 540 541

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
542
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
558
                'sub_block': rnn_block
Y
Yu Yang 已提交
559
            })
Y
Yu Yang 已提交
560 561


Y
Yang Yang(Tony) 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

586 587
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
588 589 590 591
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
F
fengjiayi 已提交
592
        if cond.dtype != core.DataType.BOOL:
Y
Yang Yang(Tony) 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
635
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
636 637


638
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
639 640 641
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
642
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
643 644 645
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
646 647 648 649

        .. code-block:: text

            x is a LoDTensor:
Y
yangyaming 已提交
650
                x.lod = [[0,                2, 3],
Y
yangyaming 已提交
651 652 653
                         [0,             5, 6, 7]]
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
654 655 656
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
657

Y
yangyaming 已提交
658 659 660 661 662 663 664 665 666
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
667 668 669 670

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
671 672
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
673 674 675 676 677 678 679 680 681 682

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
                            dtype='float32', lod_level=1)
            out = layers.lod_rank_table(x=x, level=0)
683
    """
Y
Yu Yang 已提交
684 685 686 687 688 689 690 691 692 693
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
694 695


696
def max_sequence_len(rank_table):
Y
yangyaming 已提交
697
    """Max Sequence Len Operator. Given a LoDRankTable object, this layer
Y
yangyaming 已提交
698 699 700 701
    returns the max length of a batch of sequences. In fact, a LoDRankTable
    object contains a list of tuples(<sequence index, sequence length>) and
    the list is already sorted by sequence length in descending order, so the
    operator just returns the sequence length of the first tuple element.
Y
yangyaming 已提交
702 703 704 705 706

    Args:
        rank_table (Variable): Input variable which is a LoDRankTable object.

    Returns:
Y
yangyaming 已提交
707
        Variable: The max length of sequence.
Y
yangyaming 已提交
708 709 710 711 712 713 714 715

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
                            dtype='float32', lod_level=1)
            rank_table = layers.lod_rank_table(x=x, level=0)
            max_seq_len = layers.max_sequence_len(rank_table)
F
fengjiayi 已提交
716 717 718 719 720 721 722 723 724 725
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


726
def topk(input, k):
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    """
    **topk**

    This function performs the operation that selects the k entries in the input
    vector and outputs their values and indices as vectors. Thus topk_out[j] is
    the j-th largest entry in input, and its index is topk_indices[j]

    Args:
        input (Variable|list): The input tensor that has all the data.
        k (int): The number of top elements that the function will pick.

    Returns:
        Variable: The variable of type array that contains the k largest entries
                  from input.
        Variable: The variable of type array that contains the indices of k
                  largest entries from input.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          k = 5
          array = fluid.layers.topk(x, k)
    """
Y
Yu Yang 已提交
751 752 753 754 755 756 757 758 759 760 761 762
    helper = LayerHelper('topk', **locals())
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype='int64')
    helper.append_op(
        type='top_k',
        inputs={'X': [input]},
        outputs={'Out': [topk_out],
                 'Indices': [topk_indices]},
        attrs={'k': k})
    return topk_out, topk_indices


763
def lod_tensor_to_array(x, table):
764
    """ Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.
765 766

    Args:
767
        x (Variable|list): The LOD tensor to be converted to a LOD tensor array.
768 769 770 771 772 773 774 775 776 777 778 779 780 781
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type array that has been converted from a
                  tensor.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
782
    """
783 784 785
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
786
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
787
        dtype=x.dtype)
788 789 790 791 792 793 794 795
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


796
def array_to_lod_tensor(x, table):
797
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
798 799

    Args:
800
        x (Variable|list): The lod tensor array to be converted to a tensor.
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
816
    """
817
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
818
    tmp = helper.create_tmp_variable(dtype=x.dtype)
819 820 821 822 823 824 825 826
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


827
def increment(x, value=1.0, in_place=True):
828 829
    """
    This function performs an operation that increments each value in the
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
        Variable: The tensor variable storing the transformation of
                  element-wise increment of each value in the input.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
847
    """
Y
Yu Yang 已提交
848
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
849
    if not in_place:
F
fengjiayi 已提交
850
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
851 852
    else:
        out = x
Y
Yu Yang 已提交
853 854 855
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
856
        outputs={'Out': [out]},
857
        attrs={'step': float(value)})
Y
Yang Yu 已提交
858
    return out
Y
Yu Yang 已提交
859 860


861
def array_write(x, i, array=None):
862 863 864 865 866
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
867 868 869

    Args:
        x (Variable|list): The input tensor from which the data will be read.
870 871 872 873 874 875 876 877
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

878
    Returns:
879
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
880 881 882 883 884 885 886

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
887
    """
Y
Yu Yang 已提交
888 889 890 891 892
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
893
            dtype=x.dtype)
Y
Yu Yang 已提交
894 895 896 897 898 899 900 901
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


902
def create_array(dtype):
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
    """This function creates an array of type :math:`LOD_TENSOR_ARRAY` using the
    LayerHelper.

    Args:
        dtype (int|float): The data type of the elements in the array.

    Returns:
        Variable: The tensor variable storing the elements of data type.

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
918 919 920 921 922 923 924
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


925
def less_than(x, y, cond=None, **ignored):
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
    """
    **Less than**

    This layer returns the truth value of :math:`x < y` elementwise.

    Args:
        x(Variable): First operand of *less_than*
        y(Variable): Second operand of *less_than*
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
        Variable: The tensor variable storing the output of *less_than*.

    Examples:
        .. code-block:: python

          less = fluid.layers.less_than(x=label, y=limit)
    """
Y
Yang Yang(Tony) 已提交
944 945 946 947 948 949 950 951 952 953 954
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


955
def array_read(array, i):
K
kavyasrinet 已提交
956
    """This function performs the operation to read the data in as an
957
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
958 959 960 961 962 963 964 965 966 967 968
    Args:
        array (Variable|list): The input tensor that will be written to an array.
        i (Variable|list): The subscript index in tensor array, that points the
                           place where data will be written to.
    Returns:
        Variable: The tensor type variable that has the data written to it.
    Examples:
        .. code-block::python
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
969
    """
Y
Yu Yang 已提交
970 971 972 973 974
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
975
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
976 977 978 979 980 981
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
982 983


984
def shrink_memory(x, i, table):
985 986 987 988
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
989
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
990
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
991
    helper.append_op(
Y
Yang Yu 已提交
992
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
993 994 995 996 997 998
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
999 1000


1001
def array_length(array):
K
kavyasrinet 已提交
1002
    """This function performs the operation to find the length of the input
1003
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
1019
    """
Y
Yang Yu 已提交
1020 1021 1022 1023 1024 1025
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044


class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
1045
    def __init__(self, inputs, name=None):
Y
Yu Yang 已提交
1046 1047 1048 1049
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1050
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1081
            if var_name in intermediate
Y
Yu Yang 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1094
            attrs={'sub_block': inside_block})
Y
Yu Yang 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1135
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1136 1137
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1138
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1153
                dtype=x.dtype)
Y
Yu Yang 已提交
1154 1155 1156

            out_false = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1157
                dtype=x.dtype)
Y
Yu Yang 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
                name=unique_name("_".join([self.helper.name, 'output'])),
F
fengjiayi 已提交
1199
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1200 1201 1202
            out_table.append(outside_out)

            # assign local var to outside
1203
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1227
                    level=0))
Y
Yu Yang 已提交
1228
        return rlist
1229 1230 1231 1232 1233 1234 1235


class DynamicRNN(object):
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1236 1237
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1238 1239 1240 1241
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
Q
QI JUN 已提交
1242 1243
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1257
                "step_input() can only take a Variable as its input.")
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
                name=unique_name('lod_rank_table'),
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
                name=unique_name('dynamic_rnn_max_seq_len'), dtype='int64')
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
                outputs={'Out': self.cond})

        input_array = parent_block.create_var(
            name=unique_name('dynamic_rnn_input_array'),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1292
        return array_read(array=input_array, i=self.step_idx)
1293

Y
yangyaming 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    def static_input(self, x):
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
            name=unique_name("dynamic_rnn_static_input_reordered"),
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1314 1315 1316 1317
    @contextlib.contextmanager
    def block(self):
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
Q
QI JUN 已提交
1318 1319
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1320 1321 1322 1323
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1324
            increment(x=self.step_idx, value=1.0, in_place=True)
1325 1326

            for new_mem, mem_array in self.mem_link:
1327 1328 1329
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

            less_than(x=self.step_idx, y=self.max_seq_len, cond=self.cond)
1330 1331 1332 1333 1334

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1335
                    x=each_array, table=self.lod_rank_table))
1336 1337 1338

    def __call__(self, *args, **kwargs):
        if self.status != DynamicRNN.AFTER_RNN:
1339 1340
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1341 1342 1343 1344 1345
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1346 1347 1348 1349 1350 1351
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
1352 1353 1354 1355 1356 1357
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
                    name=unique_name('dynamic_rnn_mem_init_reordered'),
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1377 1378 1379 1380 1381 1382
            mem_array = parent_block.create_var(
                name=unique_name('dynamic_rnn_mem_array'),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1383
                inputs={'X': init_tensor,
1384 1385
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1386
            retv = array_read(array=mem_array, i=self.step_idx)
1387
            retv = shrink_memory(
1388
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
                name=unique_name('mem_init'), dtype=dtype)
            arr, dtype = self.input_array[0]
            in0 = parent_block.create_var(name=unique_name('in0'), dtype=dtype)
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
                name=unique_name("_".join(
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1458 1459


Y
Yang Yu 已提交
1460
@autodoc
Y
Yang Yu 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out